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Abstract

Many traffic engineering problems consist of evaluating a number of alternate schemes in
terms of some measures of performance, such as total travel time, volume to capacity ratio,
average speed, total fuel consumption, total emissions, etc. These evaluations generally
require prior knowledge of the temporal trip making behaviour of drivers by origin and
destination. This thesis presents the development, application, and evaluation of two models
capable of inferring these temporal origin - destination (O-D) traffic demands on the basis of
observed link traffic flows and assumptions regarding drivers' route choices. In particular,
this thesis presents the development and evaluation of a Least Squared Error (LSE) and a
Least Relative Error (LRE) model, each of which is capable of estimating either static
demands, a time series of static demands, or dynamic demands. Furthermore, the potential of
using probe data, from route guidance system (RGS) equipped vehicles, to enhance these
estimated dynamic O-D demands is examined.

Both of the LSE and LRE models' mathematical formulations are presented. The LSE
model formulation parallels that of a least squared regression as the error function is
composed of the sum of the squared absolute difference between the observed and estimated
link flows. In contrast, the LRE model is formulated on the basis that the link flow error,
when measured relative to the observed flow, is to be minimized instead. Iterative solution
algorithms, that are modifications of the Jacobi and Gauss-Seidel techniques, are proposed to
solve each of the model formulations. It is shown, by way of the application of these iterative
algorithms to several example networks, that the estimated O-D demands, which result from
these iterative solution techniques, are consistent with the model formulations and with the
analytical solutions. Furthermore, it is shown for several examples that, when multiple
solutions exist which each exactly replicate the observed link flows, and no prior O-D
demand information is specified, both the LSE and LRE models estimate demands that
closely approximate the maximum likelihood solution.

The proposed iterative solution algorithms have been incorporated into a computer
model called QUEENSOD. This model can be practically applied to real networks using
current computer memory constraints. This thesis describes the application of the LSE and
LRE models to a 35 km section of multilane urban freeway in Toronto, Canada, in which
alternate parallel routes exist. Dynamic 15 minute O-D demands were estimated for the
eastbound direction for the period from 5 am to 11 am. Despite FTMS detector data being
available for only 45% of the network, a correlation coefficient of approximately 98% was
obtained for both models. This value reflects the high linear correlation between estimated
and observed link traffic flow data for this network. The statistical analysis of the expected
quality of O-D demands, which are estimated solely on the basis of RGS probe vehicle data,
indicated that even for levels of market penetration of 30 - 50%, the O-D estimates are
unlikely to be of sufficient quality to be of practical benefit.
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∆ER
n marginal reduction in average relative link flow error (LRE model)

λa Lagrange multiplier for link a

a link number
C link capacity (vph)
cij the number of probe departure calls received for origin i and destination j during the

given time slice
Cij value of the constraint equation for origin i and destination j

d time period when demand departs origin i
d an estimate of D based, in part, on probe and standard loop detector data
D the true total number of trip departures initiated in the entire network during the

given  time slice
dij an estimate of the number of trip departures between origin i and destination j
Dij the true number of trip departures between origin i and destination j in the given time

period
D1a discontinuity of upstream node of link a
D2a discontinuity of downstream node of link a
E total squared link flow error (LSE model)
ER total relative link flow error (LRE model)

E average absolute link flow error estimated from E
Eabs true average absolute link flow error

E n average absolute link flow error estimated as a proportion of the observed flow

E rel true average absolute link flow error computed as a proportion of the observed flow

ER
average absolute link flow error estimated from ER

ER
n average relative link flow error estimated as a proportion of the observed flow

G number of equally probably outcomes associated with a solution

i origin zone



Nomenclature (continued)

xxi

Term Description
I quantity of information

j destination zone
K constant used in information theory
m an estimate of M based on a sample of the RGS equipped and non-equipped vehicles

observed on selected links on the network
M the population network wide level of market penetration defined as the proportion of

all trips, departing at some time t, that are RGS-equipped
Mij the population level of market penetration for origin i and destination j
np the total number of probe vehicles initiating trips in the network during the current

period
o time period when demand is observed arriving on link a
P matrix of link use probabilities
Pt transpose of the matrix P
Pak proportion of the flow entering on leg a that exits at leg k
pij an estimate of Pij made from some sample of the total population (the probes)
Pij the population probability of any given trip being between origin i and destination j

Pijd
ao proportion of demand departing origin i at time d en route to destination j, that will

arrive on link a at time o
qija prior probability that counts on link a are associated with origin i and destination j
rod sample correlation coefficient computed between estimated and true O-D demands
rv sample correlation coefficient computed between estimated and observed flows
Ra relative reliability of the flow observed on link a
t total travel time (seconds)
T column vector of unknown O-D traffic demands
t0 free speed travel time (seconds)
tij prior estimate of the traffic demand between origin i and destination j (vph)
Tij traffic demand departing from origin i destined for zone j (vph)
Tijd traffic demand departing from origin i at time d destined for zone j (vph)
Tij

l+1 new estimate of the true traffic demand between origin i and destination j (vph)
V link flow (vph)
V column vector of observed link flows



Nomenclature (continued)

xxii

Term Description
Va flow estimated to traverse link a (vph)
Vai observed flow entering the intersection at leg k (vph)
Vao flow estimated to arrive on link a during time period o (vph)
Vko observed flow exiting the intersection at leg k (vph)
V'a flow observed to traverse link a (vph)
V'ao flow observed to arrive on link a during time period o (vph)
W measure of entropy



Glossary

xxiii

Term Description
AADT average annual daily traffic
ATMS advanced traffic management systems
BPR Bureau of Public Roads
CCTV closed circuit television cameras
COMPASS FTMS operating on Highway 401 in Toronto, Canada
continuity Flow continuity at nodes is used in this thesis to imply that total flow

into the node is equal to the total flow out of the node. The term
consistency may be substituted for continuity.

CONTRAM route choice and traffic simulation model
COV coefficient of variation (standard deviation divided by the mean)
FHWA Federal Highway Administration
FREQ traffic simulation model based on shock wave analysis
FTMS freeway traffic management system
INTEGRATION microscopic integrated network traffic simulation model
ITE Institute of Transportation Engineers
IVHS intelligent vehicle highway systems
LRE Model least relative error O-D estimation model
LSE Model least squares error O-D estimation model
MOP measure of performance
MTO Ministry of Transportation of Ontario
O-D origin - destination
RGS route guidance system
Seed seed matrix is used interchangeably with prior matrix
TMC traffic management centre
UTCS urban traffic control systems



1

CHAPTER 1

INTRODUCTION

Potential solutions to many traffic engineering problems are typically evaluated on the basis
of aggregated link-level measures of performance such as average speed, average delay, and
total fuel consumption. In many urban centres, link-level traffic data, such as traffic volume,
lane occupancy, and traffic speed, are readily available from existing traffic surveillance
systems. Unfortunately, since link-level data are often impacted by traffic control systems,
such as ramp meters and traffic signals, the evaluation of many potential traffic engineering
solutions requires that trip-level data, such as trip origin, trip destination, and trip departure
time, be known. As these trip-level data are often independent, in the short-term, of traffic
control systems, they can represent the independent input into the traffic engineering
evaluation process. Unfortunately, trip-level data are typically not readily available and are
usually very costly to obtain through direct measures. This thesis examines the problem of
estimating generally unknown trip-level data (origin - destination traffic demands) from
readily available link-level data.

This chapter introduces the problem of estimating static and dynamic origin - destination
traffic demands and briefly discusses approaches to solving this problem. First, four
questions are posed and answered; "What are O-D demands?", "How can they be obtained?",
"What are dynamic O-D demands?", and "What is the current status of O-D demand
estimation?". Subsequently, several theoretical and practical difficulties are identified.
Finally, the scope and approach of this thesis are defined and presented.

1.1 What are Origin-Destination Demands and Why
are They Needed?

Many traffic engineering problems consist of evaluating a number of alternative schemes in
terms of some measures of performance, such as total travel time, volume to capacity ratio,
average speed, total fuel consumption, total emissions, etc. Typically, when making these
evaluations, it is assumed that traffic flows on links are known and that the magnitudes of
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these traffic flows are not affected by the performance of the scheme being evaluated. For
example, the analysis of isolated traffic signals assumes that the traffic flows on each
approach link are known a priori. It is further assumed that these approach flows remain
unaffected by the performance of the traffic signal – regardless of how well or how poorly
the traffic signal operates. This assumption is not limited to the analysis of isolated
intersections. The TRANSYT model (Robertson, 1969; FHWA, 1984), which is capable of
optimizing coordinated signal networks, also assumes that the magnitude of all approach
flows are known and remain unchanged by the performance of the signals.

For these evaluation approaches, link flows are considered to be independent input data.
However, traffic networks are dynamic environments in which multiple feedback loops exist.
Individual drivers may alter their routing patterns in response to the traffic conditions that
they experience, anticipate, or are informed of. Thus, the magnitude of the link traffic flows
are actually outcomes of a process that may be dependent on the network traffic conditions
that are experienced. The obvious question then, is "What are the independent inputs?".

In the context of traffic routing analyses, which are conducted for the purpose of
evaluating operational control strategies, it can often be assumed that trip origin and trip
destination locations are fixed and are therefore the independent inputs. Consider an
automobile trip made for the purpose of commuting to work. The origin of the trip is the
driver's residence, while the destination is the driver's place of employment. In the short
term, both of these locations can often be assumed to be fixed and thus they are not affected
by the existing traffic conditions.

One may now consider all of the drivers within an urban area, each departing from their
own residence (origin) at some distinct time, en route to their own place of employment
(destination). This is the most disaggregate level at which the system can be represented. By
nature, origin-destination (O-D) demands are discrete rather than continuous quantities as
vehicles are discrete entities, for which fractional values have no physical meaning. Of
course, even as discrete quantities, it is not often practical, for even small networks, to
analyze the trip making problem at this micro level. Rather, it is usually more convenient to
aggregate both time and space in some manner. First, the network is divided into several
geographic zones. Any trip beginning from a location within the boundaries of that zone, is
considered to originate from that zone. Similarly, a trip's destination zone is that zone whose
boundaries encompass the specific location of the trip's destination.

Trip departure time is usually also aggregated into a number of periods of finite duration.
All trips that have departed after the start of a period and prior to the end of that same period,
are often aggregated as if they had departed at a uniform rate throughout that time period.

The aggregated trip making behaviour, of all of the individual drivers, is referred to as
the origin-destination demand for a particular network within a particular time frame. For
each origin-destination pair, there will exist some number of vehicles that will, on average,
make a trip from the origin zone to the destination zone. Usually this demand is represented
as the number of vehicles that wish to make a trip per unit of time (i.e. vehicles per hour).

It is useful to illustrate the potential impact of considering link flows as the independent
inputs versus considering O-D demands as the independent inputs. Consider the simple
network illustrated in Figure 1-1, having two origins, one destination, and six links. A bridge,
having a fixed capacity of 4000 vph (vehicles per hour) exists on link 5. The existing O-D
demands and resulting link flows are provided in Table 1-1. It is desired that the impact on
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the system of increasing the bridge capacity to 6000 vph be estimated. It is assumed that link
travel time increases linearly with flow, so that at capacity, travel times are twice as long as
the free flow travel time. It is further assumed that all drivers choose their routes so as to
minimize their own travel time.

If it is assumed that link flows are independent inputs, then link flows are fixed and the
only impact of increasing the capacity of the bridge is a decrease in travel time across the
bridge as the volume to capacity ratio is reduced from 1.0 to 0.66. If, however, link flows are
assumed to be variable and O-D demands are considered to be the independent inputs, then
in response to the increased capacity on the bridge, drivers could alter their routes to
minimize their own travel times and the flows on the links could change. As indicated, the
magnitude of the expected impact on system delay, of increasing the capacity of the bridge,
can be significantly different depending on whether link flows or O-D demands are assumed
as the independent input.

Figure 1-1: Simple network used to illustrate the impact of assuming link flows
versus O-D demands as independent inputs to a typical traffic
engineering evaluation

Table 1-1: Characteristics of example network
Link Capacity Free Flow Existing Flow Independent O-D Independent

(vph) Time
(min.)

Flows
(vph)

Link Flows Link Travel
Time

Link Flows Link Travel
Time

1 4000 10 4000 4000 20.0 4000 20.0
2 4000 20 2500 2500 32.5 2182 30.9
3 4000 10 1500 1500 13.8 1818 14.5
4 4000 10 2000 2000 15.0 2000 15.0
5 4000 10 3500 3500 18.8 3818 16.4
6 6000 10 6000 6000 20.0 6000 20.0

System Delay 6625 hours 6440 hours

The assumption that trip origins and destinations are fixed is not strictly true in the
context of a regional planning analysis, in which long term interactions between land use
development, employment opportunities, residential locations, and transportation
infrastructure, are all inter-related. For example, the creation of lower cost suburban housing
permits people to change the location of their residence. Alternatively, the supply of new
transportation infrastructure may stimulate the development of new businesses, which in turn
provide new trip destinations at these new employment opportunities. However, these
changes generally occur slowly, such that O-D demands can be considered to remain
constant within the much shorter time span that is considered in the evaluation of most traffic
control strategies.

For O-D demands to be considered the independent inputs, it must also be assumed that
alternative control strategies do not significantly alter the demands. Depending on the control
strategy being investigated, O-D demands may change in several ways. For example, the

A

B

C
1 2

A-C = 4000 vph
B-C = 2000 vph

Demands:

3
4

5

6



Chapter 1: Assessment of the Current State-of-the-Art 4

introduction of flexible work hours will affect trip departure time. Similarly, any alterations
to the utility, or relative attractiveness, of one or more of the available transportation modes
may affect trip mode choice between the use of private automobiles versus public transit.
Finally, the relocation of large employment centers, such as government offices, will affect
the location of some work trip destinations. Any of these changes may also cause some trip
makers to decide not to make the trip, or cause additional trips to be made. All of these
scenarios reflect significant changes to land use or transportation infrastructure, and as such
are usually not analyzed using traffic engineering techniques. These situations are therefore
not examined in this thesis.

1.2 How can O-D Demands be Obtained?
O-D demands can be observed directly only through some form of survey, in which the
actual origin and destination of a vehicle or trip maker are obtained. Typically, one of three
methods is used to carry out an O-D survey. Within the first method, a subset of households
are identified in such a way as to capture a representative sample of the population. Each
household is then telephoned and the respondent is asked to indicate the origin and
destination of their typical home-to-work and other types of trips. A second approach is to
stop some portion of en route vehicles for a roadside survey, in which the driver of each
vehicle is asked to indicate the origin and destination of her/his current trip. A third approach
relies on recording vehicle license plate numbers at several strategic sites within a study area.
The license numbers recorded at one site are subsequently matched against observations at
other sites to determine the origin and destination zone of each vehicle.

Each of these approaches provides a direct observation of the O-D demands for a sample
of the population. However, these approaches are also expensive, and are susceptible to
various sampling errors as well as systematic errors. Furthermore, it is rarely possible to
extract dynamic demands that are applicable for short periods, of say 5 to 15 minutes, from
direct survey data.

In the absence of direct observation, O-D demands are sometimes also estimated based
on land use data. Typically, within the traditional four stage transportation planning process
(trip generation, mode split, trip distribution, and assignment), O-D demands are estimated
based on various zonal land use data, such as population, employment opportunities, and
measures of affluence. Zonal statistics are obtained from land use plans and census data, and
trip productions and attractions are obtained through household surveys. Relationships
between the number of trips produced or attracted are then typically determined through the
calibration of multiple linear regression models. These total zonal attractions and productions
are subsequently distributed into individual O-D demands, typically through the use of a
gravity type of model.

Conversely, O-D demands may be estimated through the use of a direct demand planning
model, in which all four elements of the transportation process are integrated into a single
model. Unfortunately, both approaches rely on aggregate zonal characteristics to determine
O-D demands. This level of analysis may be well suited to aggregate planning analyses, but it
is not appropriate for the estimation of O-D demands for traffic control strategy evaluations.
The relationships between socio-economic factors and trip generation rates are insufficiently
strong to permit the estimation of the time of trip departure – data that are necessary for the
estimation of dynamic demands. Furthermore, the level of detail considered in most traffic
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analyses, precludes the formation of large zones, for which trip generation rates could be
adequately determined based only on the aggregate zonal characteristics.

A third approach attempts to infer the unknown O-D demand from observed link traffic
flow data. This method circumvents the difficulty of adequately estimating zonal trip
productions and attractions from aggregate zonal characteristics, as the traffic flows can be
observed directly on the links within the network using vehicle loop detectors. Typically, the
objective of the O-D estimation technique is to estimate an O-D demand that replicates the
observed flows as closely as possible. Within these techniques, there is no need to calibrate
relationships linking trip making behaviour to socio-economic factors, but unfortunately,
there are several other difficulties that must be overcome, which will be discussed in detail
later.

Recently, demonstration projects have commenced using systems that attempt to improve
the efficiency of traffic networks by transmitting near real-time traffic data (i.e. link travel
times) to suitably equipped vehicles. Computers on-board these vehicles can then utilize
these data to plan a route towards the driver's stated destination. In addition to receiving
information, such equipped vehicles also transmit data, including the vehicle's origin and
destination, back to the traffic control centre. This two-way communication provides an
opportunity to directly collect, in real-time, time-varying demands for a sample of the total
vehicle population. The statistical reliability of such data as estimators of population
characteristics, is susceptible to some of the same sampling errors as are other forms of direct
survey, however, probe based O-D estimates may be obtained economically if a two-way
communication link exists, and these estimates may be dynamic.

These last two approaches are expected to hold the most promise for the reliable
estimation of dynamic O-D demands that are suitable for traffic analyses. As such, this thesis
focuses on examining the current state-of-the-art of these approaches, identifying remaining
shortcomings, and developing and evaluating two estimation methods that fall within these
approach categories.

1.3 What are Dynamic O-D Demands?
Earlier sections of this thesis have determined what O-D demands are, and why they are
needed. In addition, four potential methods of obtaining O-D demands have been identified.
At this point it is necessary to more clearly differentiate between what are considered to be
static and dynamic O-D demands.

Dynamic demands are considered to differ from static demands in that static demands
assume that every trip is, or can be approximated to be, completed within a single analysis
time slice such that any temporal and spatial interactions between consecutive time slices can
be ignored. In order to avoid violating this assumption, static demands are often developed to
be applicable for a relatively long period, say from 30 minutes up to several hours. Within
this time period, vehicles are further assumed to depart their origins at a constant rate.

However, as will be illustrated later in this thesis, field data show that O-D demands can
vary significantly with time of day. Static demands, with application periods of as much as
several hours, are therefore often not adequate to reflect these temporal variations. It is
possible, however, to develop a time series of static demands, which reflect to some extent
the temporal variations observed in the actual field demands. In creating this time series of
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demands, as the duration over which each individual static demand is active becomes shorter,
the assumption, that all trips can be completed within the departure time slice, becomes
increasingly more violated. Dynamic O-D demand estimates, which do not require trips to be
completed within their departure time slices, may have departure time slices of any duration
without violating these assumptions.

The static approach of inferring O-D demands from link flows is easily adapted to the
estimation of dynamic O-D demands. Link flows are usually obtained through the use of
induction loop detectors and are typically available on a 20 second to one minute basis from
urban traffic control systems (UTCS) and freeway traffic management systems (FTMS).
Vehicle probe data also provide an opportunity to obtain efficiently, in near real-time, O-D
data for a sample of the vehicle population. These O-D estimation approaches, therefore,
lend themselves rather well to the task of estimating dynamic O-D demands.

1.4 What is the Current Status of Synthetic O-D
Demand Estimation?

Over the last four decades, much work has been carried out to develop systematic approaches
for reliably estimating O-D demands. Initially, these efforts were limited to developing
methods appropriate for longer term transportation planning purposes as the highway
network went through a rapid expansion phase. More recently, due in large part to the need
to manage existing automobile transportation infrastructure more efficiently, there has been
greater emphasis on estimating O-D demands that may be used for more short term traffic
analyses.

In discussing the current status of O-D estimation approaches, it is appropriate to
introduce a system for classifying existing and newly proposed approaches. This system is
intended only to provide a structure within which an assessment of different techniques can
be made, and is not intended to be a definitive categorization of all proposed methods. In
fact, some approaches can arguably be assigned to more than one category. However, the
chosen classification permits several important fundamental distinctions between different
approaches to be made more easily and concisely. In addition to the four classifications that
are defined, several specific problems, that must be addressed in estimating O-D demands,
are identified and discussed.

The first distinction that can be made is between heuristic and mathematical approaches.
Several heuristic approaches have been proposed, however, since they often lack a sound
mathematical foundation, less confidence can be placed in their estimation abilities. In
general the preferred approach has a mathematical basis that has more clearly defined
theoretical properties and may also be practically applied.

A second distinction is made based on the scope of the approach's applicability. One can
generalize this distinction to classify approaches as being either applicable to turning
movements at isolated intersections only, or to more general networks. As the estimation of
intersection turning movements is simpler than the estimation of O-D demands for general
networks, much of the earlier research reported on in the literature has examined only
intersections, but is not necessarily valid for the purposes of this thesis.
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The third distinction, that is made between different techniques, is based on the
approaches' assumption regarding the types of routes that drivers utilize. Routes must usually
be known in order to convert estimates of O-D demands into estimates of link flows. The
vast majority of approaches therefore assume that routes are known a priori and do not vary
with levels of O-D demand. A few methods have explicitly recognized that the routes that
drivers utilize are dependent on the as yet unknown O-D demands. These approaches must
attempt to estimate simultaneously the O-D demands and the routes. Several such
mathematical models have been formulated, however, adequate solution algorithms for these
models have not yet been fully developed.

The last distinction, that is made between the capabilities of different approaches, is to
distinguish if the techniques estimate static and/or dynamic O-D demands. It should be noted
that the problem of estimating dynamic demands is considerably more demanding than that
of estimating static demands. In addition, even though static estimation is considerably less
challenging, no single static estimation method has been shown to be both theoretically and
practically superior to all others. Perhaps the greatest impact on the current state of static
estimation has been made by Van Zuylen and Willumsen (1980; Van Zuylen, 1981;
Willumsen, 1992), with their development of compatible yet contrasting trip-count based
entropy maximizing and link-count based information minimizing models.

In general, much less has been accomplished in developing dynamic O-D demand
estimation methods. Significant contributions have been made by Cremer and Keller (1987;
1984; 1981; Cremer 1991) and others (Kessaci, et al., 1989) to estimating dynamic
intersection turning movements, but to-date it has either not been possible to extend the
formulation of these methods of application to general networks, or their performance upon
application to general networks has proved unsatisfactory.

1.5 What are some of the Theoretical and Practical
Problems of O-D Estimation?

Lastly, several theoretical and practical problems, that are encountered when estimating
network demands, are used to provide another means of comparing different approach
strategies. These difficulties, illustrated in Table 1-2, include the theoretical possibility that
multiple O-D demands may exist that exactly replicate the observed link flows. In practice,
link flow continuity at nodes rarely exists within a set of observed data, with the result that
often no O-D demand exists that exactly replicates the observed flows. However, multiple
solutions, that have equal levels of link flow error associated with them, may still exist. It is
usually not known a priori into which of the four categories a particular estimation problem
can be classified.
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Table 1-2: Illustration of several theoretical difficulties that can be encountered
when estimating O-D demands from link flows

No Exact Solution Exists At Least One Exact Solution Exists
Unique

Optimum
A

B

C
100 310

200

A

B

C
100 300

200

Potential Solutions

Objective
Function

Potential Solutions

Objective
Function

Multiple
Optima A

B

C
300 245

200

D

245

A

B

C
300 250

200

D

250

Potential Solutions

Objective
Function

Potential Solutions

Objective
Function

Further problems arise due to the fact that the routes, that are utilized by the O-D
demands, are usually not known. Furthermore, even if the routes are known, the proportion
of the demand that utilized each available route is often still unknown. Lastly, but possibly of
greatest significance, usually no comparisons can be made between the estimated and the
true demands, as these true demands are rarely known. It is possible to carry out controlled
experiments in which the true O-D demands are known, however, it is usually not possible to
transfer the conclusions that are made under these conditions to the general case, as the
performance of the estimation approach is usually a function of the network's characteristics.

1.6 What is the Scope and Approach of this Thesis?

1.6.1 Thesis objectives
This thesis has the following eight specific objectives:

1. To develop a theoretically sound static and dynamic network O-D estimation model
formulation that is capable of being applied to real world traffic networks.

2. To incorporate explicitly into the model formulation an ability to reflect the relative
reliability of the different sources of observed link traffic flows.
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3. To add to this model a feature that explicitly permits a consideration of the relative
reliability of the prior O-D information that is specified for each individual O-D cell.

4. To develop a model solution procedure that is responsive to both theoretical and field
requirements. For example, the model must be able to estimate the most likely O-D
when either multiple solutions exist that exactly replicate the observed link flows, or
when no feasible solution exists that replicates the observed flows. The model must
accomplish this without any pre-processing of the observed link flow data to ensure
flow continuity, or to remove redundancies.

5. To illustrate the performance characteristics of the model for a number of simple
hypothetical example networks for which true demands are known and analytical
solutions can be applied.

6. To explore the viability of applying the model to a 35 kilometre section of a multi-
lane urban freeway corridor in Toronto, Canada, using aggregated 15 minute FTMS
link flow data from 5 AM to 11 AM. This system is one of the most heavily traveled
freeway corridors in North America, and provides a challenging field test for the O-D
estimation model.

7. To examine statistically the expected reliability of O-D demand estimates made
solely on the basis of probe vehicle data.

8. To develop expressions that can be used to quantify the reliability of O-D demands
that have been made solely on the basis of probe vehicle data.

1.6.2 Problems addressed by this thesis
It is prudent to state explicitly the problems, associated with estimating O-D demands, that
are addressed within this thesis.

1. This thesis specifically examines the problem of estimating static and dynamic
network O-D demands based on observed link flow data.

2. The theoretical problem of choosing one specific solution when multiple solutions
may exist is also addressed. The problem of estimating an O-D demand when the
presence of flow discontinuity precludes the existence of an O-D demand, that can
exactly replicate the observed link flows, is also addressed. Since no direct measure
can be estimated of how well the estimated demand replicates the unknown true
demand, several surrogate measures of performance are developed.

3. The problem of incorporating the relative reliability of link flows and prior
information within the mathematical formulation is addressed.

4. The problem of developing a solution algorithm that can be implemented using
available technology for application to real world networks is addressed.

5. This thesis addresses the problem of quantifying the reliability of O-D estimates
made solely on the basis of probe vehicle data.

1.6.3 Problems not addressed by this thesis
In contrast to the previous section, it is useful to state explicitly which aspects of the O-D
demand estimation problem are not addressed by this thesis.
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1. This thesis does not address the problem of determining vehicle routes and route
weights. It is assumed throughout this thesis that adequate vehicle routes and route
weights will be exogeneously defined.

2. This thesis does not examine the relative benefits or dis-benefits of using RGS
equipped O-D estimates as prior information to a synthetic O-D estimation model.

1.6.4 Similarities and differences to other approaches
This thesis develops two O-D estimation models. The first, the least squared error (LSE)
model adopts, as its objective function, the sum of the squared link flow differences. The
LSE model objective function is similar to a least squares regression, but the iterative LSE
solution algorithm constrains the O-D estimates to non-negative values. The LSE model
provides an estimate that is closer to the true constrained global optimum than does
truncation of the unconstrained estimate. The LSE model is also able to estimate an O-D
demand when the problem is under-specified and multiple solutions exist. The formal
solution to constrained or unconstrained regression is not valid under these conditions.
Furthermore, it is shown for several examples that, when multiple solutions exist, and no
prior information is available, the LSE model provides an O-D estimate that approximates
the most likely solution.

The second proposed model, the least relative error model (LRE), is based on the
assumption that the error function should consider the magnitude of the link flow error
relative to the observed flow. Again, it is shown for several examples that, when at least one
feasible solution exists, the LRE model results in O-D estimates that are similar to the
information minimization model proposed by Van Zuylen and Willumsen (1980). When no
feasible solution exists that exactly replicates the observed flows, the information
minimization model cannot be applied.

The estimation of O-D demands solely on the basis of probe vehicle data has few
similarities to other existing work, except that it may be considered to be somewhat similar
to that of estimating O-D demands from survey methods. However, several characteristics
unique to vehicle probe data decrease this level of similarity. First, probe data reliably
provide the origin and destination for each probe vehicle, while license plate surveys often
rely on only a portion of the license plate identifier, introducing the possibility that the
recorded vehicle identifier is no longer unique. Additionally, license plate and road side
surveys cannot ensure that the same vehicle does not pass through several recording stations
within the same trip. The primary difficulty that is faced when making probe based O-D
estimates is determining the proportion of the total population that is being sampled.

1.6.5 Method of approach
Two similar, but different, network O-D estimation models are formulated. Initially, the
models are formulated to estimate static demands only, but after ensuring that these models
are well behaved and exhibit desirable characteristics for the static problem, their
formulations are extended to the dynamic case. The first model that is proposed assumes the
sum of the squared deviations between the observed and estimated link flows as the error
function that is to be minimized, while the model's algorithm ensures that O-D estimates are
non-negative. This model is referred to as the Least Squared Error (LSE) model.



Chapter 1: Assessment of the Current State-of-the-Art 11

The second proposed model is based on the assumption that the most appropriate error
function is a relative measure of the link flow error, where any errors are expressed as a
proportion of the observed flow. This model is referred to as the Least Relative Error (LRE)
model.

1.6.6 Method of validation
The proposed LSE and LRE models are validated in several ways, as described below.

1. First, the models' mathematical formulations are completely described and any
assumptions are stated and justified. Limitations of both the formulations and the
solution algorithms are noted and their impact on the estimated O-D demand is
explored.

2. The model formulations are solved analytically for several small hypothetical
networks, to demonstrate the performance and validity of the models.

3. The iterative solution algorithms developed to solve efficiently the formulations are
presented and are used to estimate O-D demands for the same hypothetical networks
that are used to demonstrate the model formulations. It is shown that the solution
algorithm results are consistent with the model formulations.

4. The model estimates are compared, for two separate networks, with estimates from
the information minimizing and entropy maximizing models proposed by Willumsen
and Van Zuylen.

5. Both models are applied to dynamic O-D estimation problems on hypothetical
networks for which an earlier O-D loading is performed, such that the true O-D
demand is known.

6. The LSE and LRE models are used to estimate 15 minute dynamic O-D demands
based on FTMS data from 5 AM to 11 AM, for a 35 kilometre section of a multi-lane
urban freeway network in Toronto, Canada. Since the true demands are not known
for this real network, only surrogate measures of performance are examined.

7. In each validation case, several measures of performance are examined, including the
average root-mean-squared (RMS) deviation between the estimated and true O-D
demand (when the true demand is known), the RMS deviation between estimated and
observed link flows, the correlation coefficient based on observed and estimated
flows, and the marginal reduction in link flow error associated with each iteration of
the solution algorithm.

8. Finally, the expressions for the reliability of RGS probe based O-D estimates, derived
from statistical sampling theory, are compared with simulation model results. These
comparisons serve two purposes. First, the similarity between the analytical estimates
and the simulation results provide confidence in the appropriateness of the
approximations made in deriving the analytical expressions. Second, the comparisons
provide a level of confidence in using the simulation model to evaluate networks that
are too complex to easily permit the application of the analytical expressions.
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1.6.7 Method of presentation
Chapter 2 provides a detailed review and assessment of the current state of O-D estimation
techniques. This chapter briefly examines each of the four general O-D estimation
approaches that have been proposed in the literature. It is demonstrated that the use of link
flows is the most promising of these approaches. Further examination of the existing
literature is limited to those techniques that rely on the use of observed link flows to estimate
the demands. As there exists a large body of relevant literature, the presentation of this
assessment is organized in accordance with the O-D estimation approach categories that
were defined in Section 1.4.

In Chapter 2, it is found that though no single estimation technique has been shown to be
superior to all others, the maximum likelihood models that have been proposed by Van
Zuylen and Willumsen, seem to serve as a benchmark against which many other models are
typically compared. Chapter 3, then, examines in more detail these two models, in order that
the theoretical basis, assumptions, and limitations can be fully understood. The performance
characteristics of these two models are examined for several example networks.

Chapter 4 provides the formulation and performance characteristics of the LSE model,
which is the first of the two O-D estimation models proposed in this thesis. The formulation
of the LSE model is illustrated for several network traffic conditions, including situations in
which flow continuity, flow discontinuity, and multi-path route issues exist. The
incorporation of link flow reliability into the model formulation is described and illustrated,
and the issue of determining appropriate link flow reliability factors is examined. Potential
factors which are explored to incorporate the latter, include the inverse of the flow variance,
the inverse of the coefficient of variation (COV), and a heuristically determined factor based
on the magnitude of flow discontinuity. An iterative solution approach, that is used to solve
the LSE model formulation, is developed on the basis of the Gauss-Seidel and Jacobi
iterative solution techniques. Conclusions regarding the LSE model's theoretical
appropriateness and its performance characteristics are made.

Chapter 5 presents the formulation of the second proposed model, the LRE model. The
presentation of this model parallels the presentation of the LSE model in Chapter 4. Example
networks which were used to illustrate the performance characteristics of the LSE model in
Chapter 4 are also used here to illustrate the performance of the LRE model. Conclusions are
made regarding the appropriateness of the LRE model.

Chapter 6 provides the dynamic extension to both the LSE and LRE static model
formulations. The need for dynamic demands, as opposed to static or a time-series of static
demands, is demonstrated using field data. The computational implications of extending the
static formulations to permit dynamic estimation are examined. A method for determining
link use probabilities from known routes, route weights, and link travel times, is also
presented.

Chapter 7 describes the application of the LSE and LRE dynamic models to a 35
kilometre section of a multi-lane freeway network in Toronto, Canada. This application
relies on the use of FTMS link flow and link travel time data. The true demands, routes and
route weights are not known. Dynamic 15 minute demands are estimated for the 6 hour
period from 5 AM to 11 AM.
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Chapter 8 presents a statistical analysis of the reliability of O-D demands estimated
solely on the basis of RGS probe data. This statistical analysis is compared with a simulation
approach for a hypothetical network.

Conclusions and recommendations are made in Chapter 9.
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CHAPTER 2

Assessment of the current state-of-the-art

2.1 Introduction
The problem of obtaining accurate and reliable O-D demands has challenged traffic
engineers and planners for several decades. During this time, considerable research effort has
been directed at devising methods for solving this problem by means of various direct survey
and indirect analytical methods. More recently, due to the need to have adequate knowledge
of dynamic O-D demands for the operation and evaluation of FTMS, UTCS, and RGS, the
desired degree of aggregation and resolution of the estimated O-D demands has also
changed. It is therefore instructive to review the range of relevant approaches that has been
developed to-date, and then to utilize the gap between the current state-of-the-art and current
requirements to indicate the present needs for further research.

This chapter is organized as follows. Section 2.2 identifies and briefly describes the four
basic categories of approaches that can be used to estimate O-D demands. As this thesis
addresses the issue of estimating O-D demands from link traffic flows, Section 2.3 describes
in greater detail that specific fundamental problem and solution approach. Section 2.4
provides a comprehensive examination of previous research with respect to this link flow
based approach. The existing body of literature is categorized by approach methodology,
permitting efficient dissemination. It also provides an organized structure that facilitates the
identification and evaluation of the various link based O-D estimation approaches that have
been previously proposed. Section 2.5 provides a summary of the state-of-the-art and as such
provides a logical reference point from which the current thesis contributions can be
examined.

2.2 General Solution Approach Categories
During the course of the past four decades, many different approaches have been utilized in
attempting to estimate O-D demands. Part of the reason that such a variety of approaches
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exists, is the changing requirements that have emerged. These changes result from a shift in
emphasis from requiring strictly static O-D demand forecasts for regional planning purposes,
to requiring fully dynamic O-D demands for the operation and evaluation of RGS and other
traffic management systems.

The majority of the existing O-D solution approaches can be classified as belonging to at
least one of the following three categories;

1. Transportation planning models
2. Direct sampling of individual trip makers
3. Indirect estimation from link flows

In some instances the allocation of a particular solution approach to one of the above
three categories is somewhat arbitrary as the final approach may contain elements of more
than one category. However, the identification of the above three categories still serves as a
convenient overall structure from which to begin the discussion.

The following three subsections provide a brief description of each of the above three
categories and outline the relevance of each to the problem of estimating O-D demands for
the operation and evaluation of RGS and other traffic management systems.

2.2.1 O-D estimates from transportation planning models
Historically, the focus of urban transport systems planning was primarily on estimating
expected travel demands for the purpose of designing future transportation infrastructure
systems. From this need, the typical four stage travel demand forecasting process, consisting
of trip generation, mode split, trip distribution, and route assignment, evolved.

Two of the stages of this process, trip generation and distribution, combine to estimate
expected O-D demands, and as such, are of relevance to this thesis (Figure 2-1). The
following is a brief description of the trip generation and distribution processes along with a
critique of the applicability of this approach to estimating O-D demands for operation and
evaluation of traffic management systems. Many quality reference sources (including
Hutchinson, 1974 and Kanafani, 1983) are available that describe trip generation and
distribution in much more detail than will be presented here.

The process of trip generation involves the estimation of zonal trip productions and
attractions. Typically, this is accomplished by utilizing a calibrated regression model that
forecasts the number of zonal trip productions and trip attractions as some function of a
number of independent zonal land use descriptors.

In order to estimate the zonal productions and/or attractions, the coefficients of the trip
generation model need to be determined. This calibration requires a knowledge of the
relevant zonal characteristics as well as the actual trip productions and attractions. Using
these known base year conditions, the model parameters are typically estimated using
regression. Having calibrated the demand equation for the base year conditions and if
estimates of future zonal characteristics are available, the equation can then be used to
estimate future demands. The result of this demand model is an estimate of the total future
productions and attractions for each zone in the network. In order to determine the
interaction between zones, a distribution of these total productions and attractions is
necessary.
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In order to resolve the underspecifications that exist, the relationship that T dij ij
n∝1  is

introduced, where Tij is the demand between origin i and destination j, and dn is some
measure of the separation distance between i and j. The similarity to Newton’s gravitational
model has resulted in the common reference to the above model as the gravity model. The
separation distance is referred to as the deterrence or impedance function and is often
measured by travel time.

The gravity model is a subset of the more general synthetic O-D problem if the row and
column totals are considered to be observed link flows on the zone connectors only. Wilson
(1970) has shown how the gravity model can be derived based on the entropy-maximization
principle of information theory. This formulation provides the most probable O-D trip matrix
given the zonal trip productions and attractions.

The transportation planning approach to estimating O-D demands exhibits at least three
characteristics that make it undesirable for the estimation of O-D demands for the operation
and evaluation of traffic management systems. First, the calibration and subsequent use of
the model require that trip attractions, productions, zonal characteristics, and trip length
frequency be known for some base year conditions. These data and regression models reflect
aggregate zonal socio-economic characteristics that are costly to obtain and cannot reflect the
temporal level of detail of trip making necessary for traffic management use.

Second, the traditional transport planning approach is generally only capable of capturing
the aggregate changes in trip making behaviors that are reflected by changes in aggregate
zonal characteristics. It is not possible to capture the daily or hourly variations that are a part
of the dynamic nature of O-D traffic demands.

Third, the use of a gravity model to resolve the problem of underspecification can be
limiting as it assumes that only traffic flows on zone connector links are available, and that
trip making behaviour is adequately described by the gravity model. This structure may
suitably describe trip making behaviour at a regional level, but is not likely to be adequate
for describing trip making behaviour within urban centres.

Direct demand models differ from the four quasi-independent stages of urban transport
systems process in that they incorporate O-D estimation, model split, and assignment all
within the same model. The potential advantage of direct demand models is that their unified
structure provides for a more sound conceptual basis. However, it would appear that these
models have little more of practical value to offer for estimating O-D demands for the
operation and evaluation of traffic management systems than the four stage transportation
planning models already examined.
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Figure 2-1: Use of the trip generation and trip distribution phases of the
transportation planning process to estimate O-D demands

2.2.2 O-D estimates from direct sampling
One method of obtaining an O-D for a region is to directly measure the O-D for some
random sample of the population. Then, using statistical sampling theory, conclusions can be
drawn regarding the O-D of the entire population.

As illustrated in Figure 2-2, O-D demands are typically observed, by way of a license
plate survey, for a sample of the population. Observers are located at a number of zones in
the network and license plate numbers are recorded for a portion of the total traffic passing
the observation station. After the observation period is complete, license plate numbers
observed at different zones are used to match vehicles' origins and destinations.

In practice, due to observation time constraints, usually only a portion of the license plate
number is able to be recorded. In this situation, not only must standard sampling error be
considered, but as the recorded portion of the license number may no longer be a unique
vehicle identifier, errors can arise due to incorrect vehicle identification.

It has been reported in the literature (Hauer, 1978) that the presence of spurious matches
may in practice lead to significant bias. As a result, a number of statistically based
approaches have been proposed to minimize this bias. One of the most recent contributions
proposes that travel time be used to identify physically infeasible matches (Watling, et al.,
1992). Watling (1990) also provides a review of earlier methods.

Despite the use of such methods to minimize the impact of spurious matches, direct
sampling by way of license plate surveys is costly, time consuming, and usually only
provides an aggregate O-D, reflecting average O-D demands over a commuting peak period.
Even though license plate surveys can often provide better estimates of O-D demands than
the transportation planning process, they are still usually inadequate for developing O-D
demands suitable for the operation and evaluation of traffic management systems.

Though direct sampling, by way of license plate registration matching, is not an adequate
approach for estimating dynamic O-D demands, the use of statistical sampling methods will
be utilized later in this thesis to provide estimates of the O-D departure rates, and the
reliability of these rates, based on information obtained from RGS-equipped vehicles.
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Figure 2-2: Use of partial license plate number sampling to estimate O-D demands

2.2.3 O-D estimates from link counts
The last category of approach for estimating O-D demands, and the one of most interest to
this thesis, is the estimation of O-D demands based on observed link traffic counts. This
approach, illustrated in Figure 2-3, has a number of advantages over the previous three
approach categories.

1. With the increasingly popular use of FTMS and UTCS, most urban centers have
electronic surveillance on at least some portion of the road network. This electronic
surveillance, typically in the form of induction loop detectors, is able to provide
continuous centralized link traffic counts in near real-time. Being able to utilize these
freely available data would be advantageous from a data collection viewpoint alone.

2. Link traffic flows are the manifestation of O-D demands interacting within the
network. Thus, link counts provide a direct reflection of the unknown O-D demands.
Furthermore, these counts reflect the dynamic spatial and temporal behavior of these
demands.

3. Link counts provide link specific constraints to the O-D estimation problem, as
opposed to aggregate zonal constraints. The degree of aggregation is determined by
the level of resolution of the traffic network representation.

It is primarily for these three reasons that estimating O-D demands from link flows has
attracted so much attention in the past 20 years.

Unfortunately, despite the aforementioned advantages, the best manner in which the
information, provided by link counts, can be used to estimate O-D demands still remains to
be proven. In order to present the different philosophies evident in the existing literature, and
to provide some evaluation of the state-of-the-art, it is useful to first examine in some detail
the basic problem of estimating O-D demands from link counts. This examination will
clearly reveal several difficulties that must be addressed when estimating O-D demands from
link counts. These difficulties are identified and the existing literature is assessed according
to the philosophical approach adopted to deal with these difficulties.
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Figure 2-3: Use of observed link flows to estimate O-D demands

2.3 Definition of Link-Count Based O-D Estimation
Problem

Before discussing the problem of synthetically estimating O-D demands, it is instructive to
investigate first the inverse or complementary relationship between O-D demands and link
traffic flows. The reason for this is that many synthetic O-D estimation models involve a
loading model in which a known O-D matrix is applied to a network in order to estimate the
associated link flows. The correlation between such estimated and observed flows is then
utilized to refine the initial O-D matrix.

Traditionally, in the transportation planning context, a static O-D matrix is assumed to be
a known input to the traffic assignment process. In order to determine the resulting link
flows, the O-D demand is assigned to the network. This requires the simultaneous
determination of the routes that traffic is likely to utilize and the link flows and travel times
that occur on these routes, as these latter link times will impact the above route choices.
Various techniques have been used to assign the traffic demand, but regardless of the
method, the result can be expressed as a three-dimensional matrix describing the proportion
of demand departing origin i, en route to destination j, using directed arc (link) a. For time
varying O-D demands, this link use proportion matrix includes two more indices; namely the
time at which demand departs the origin (d), and the time at which the demand is observed
on link a (o).

The flow estimated to arrive on a link at any time is then given by Equation [2-1].

( )∑∑ ⋅=
d ij

ao
ijdijdao PTV [2-1]
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where: i = origin zone number
j = destination zone number
a = link number
d = time when demand departs origin i
o = time when demand is observed arriving on link a
Vao = flow observed arriving on link a at time o
Pijd

ao = proportion of demand departing origin i at time d en route to
destination j, that will arrive on link a at time o

Tijd = demand departing from origin i at time d destined for j
Equation [2-1] consists of three quantities; link flows, O-D demands, and link use

proportions. In the O-D estimation process, link flows are directly observable, and as such
can be considered to be known, though this knowledge is usually not without error. The O-D
demands are unknown, and are the objectives of the estimation process. The link use
proportions, which themselves may be a function of the unknown demands, are also
unknown.

Typically, it is either assumed that the network is of such a configuration that the link use
proportions are obvious (i.e. a static scenario on a linear network), or it is assumed that the
link use proportions are constant, and that they can be determined exogeneously to the O-D
estimation problem. In this way, Equation [2-1] contains only one unknown quantity, namely
the O-D demand.

For the estimation of dynamic O-D demands, (a • o) equations and (i • j • d) unknown
demands exist. In theory, when node and path flow continuity exist, the number of unknowns
is generally greater than the number of independent equations. The problem is then under-
specified and multiple solutions often exist that each exactly replicate the observed link
flows.

In practice, due to measurement error and the temporally or spatially varying nature of
traffic flow, node and path flow continuity rarely exist. Thus, few, if any, of the (a • o)
equations are redundant, and there are often more equations than unknowns. The problem is
now overspecified, and there is, in general, no solution that exactly replicates the observed
link flows.

The approach taken to solving the O-D estimation problem depends a great deal on the
assumptions made concerning the character and availability of the link use proportions, the
existence of node and path flow continuity, the static or dynamic nature of demands, the
presence and quality of additional information, and the scope of the network (intersection,
linear corridor, or general network). In the next section, the existing literature will be
examined to determine how other researchers have approached the problem. Particular
attention will be paid to understanding the impacts that their assumptions have on the
ultimate performance of their proposed method.

2.4 Categorization of Link-Count Based Approaches
This section provides the results of an examination of approaches to O-D estimation from
link flows as reported in the literature. This section is not intended to be a comprehensive
summary of all previous work, as many such summaries are already available (Cascetta and
Nguyen, 1988; Willumsen, 1992; McNeil and Hendrickson, 1985b). Instead, the intent here
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is to categorize the rather large body of previous work in order to identify the major
philosophical approaches that are prevalent. Having identified these different approaches,
comments are then made concerning their relative strengths and weaknesses. This structure
permits the reader to assimilate the current state-of-the-art, and provides an appropriate
context in which the contributions of this thesis can be presented.

As noted in Chapter 1, four classifying distinctions are made between existing link flow
based O-D estimation approaches. These four distinctions are:

1. Heuristic vs. mathematical approaches
2. Intersection vs. network O-D demands
3. Pre-specified vs. variable routes
4. Static vs. dynamic O-D demands
The following subsections discuss representative proposed models for each of the

classifications. Within each classification, the state-of-the-art is assessed and comments are
made.

2.4.1 Heuristic vs. mathematical approaches
In contrast to the typical approach, in which a rigorous mathematical formulation is first
developed, a number of authors have proposed heuristic approaches to the estimation of O-D
demands. Hauer et al. (1981) proposed that intersection turning movements proportions,
could be considered a function of intersection type, where five different intersection types
were identified. On the basis of data for 145 intersections, average turning movement
proportions were then computed. These proportions could then be used to estimate turning
movements at any other intersection.

Other heuristic approaches that have been proposed include those that are only
appropriate for estimating turning movements at intersections (Mountain and Westwell,
1983; Mekky, 1979), and those that are appropriate for estimating static demands in more
general networks. Yagar (1988) proposed a method that utilizes roadside survey data to
obtain static O-D information for a sample of the population. The responses from each
survey station can then be scaled up to reflect the total link flow observed on that link. Any
O-D pairs that are not represented within the sample, and any link flows that are under-
estimated by the estimated O-D demand, are assumed to be insensitive to the impact of
control strategies and as such are represented as deterministic pre-load flows.

Barbour et al. (1991) proposed a method that is based on the incremental determination
of static demands on the basis of the flows on the shortest paths between each O-D pair. This
method does not require prior knowledge of either routes or O-D demands, however, the
shortest path algorithm requires that delay-flow relationships be known for each link in the
network.

The most significant criticism of heuristic approaches, is that they lack sufficient
mathematical basis to instill confidence in the properties of the estimated solution.
Furthermore, few of these heuristic approaches have been shown, by way of application, to
be reliable methods for the practical estimation of dynamic O-D demands in a general
network.
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2.4.2 Intersection vs. network approaches
The problem of estimating O-D demands for a single intersection simplifies to that of
estimating the proportion of the approach flow that exits the intersection by each possible
exit. These proportions are generally referred to as the turning proportions. The constrained
problem is simpler to solve than the more general network O-D estimation problem,
particularly for the static case. To illustrate this, consider Figure 2-4, which depicts a typical
four leg intersection. It is desired to determine the proportion of the flow arriving at approach
1, that exits the intersection at each of the other three legs. This situation can be
mathematically stated as in Equation [2-2].

( )∑ ⋅=
a

i
a

k
a

o
k VPV , a ≠ k [2-2]

where: Vk
o = observed flow exiting at leg k

Va
i = observed flow entering at leg a

Pa
k = proportion of flow entering on leg a that exits at leg k

One notable difference between Equation [2-2] and Equation [2-1] is the absence of any
O-D demand term within Equation [2-2]. The only unknown quantities in Equation [2-2] are
the turning proportions. If flow continuity exists, then at least one exact solution also exists.
Furthermore, as there is only a single equation per approach leg, there are no redundant
equations. For this four leg intersection, there are three unknown turning movement
proportions per approach leg, or a total then of 12. Equation [2-2] provides four constraint
equations. An additional four constraints are provided by the fact that the sum of the turning
proportions for each entrance leg a, across each exit leg k, must be equal to one. Thus, there
exists 12 unknowns, but only 8 independent constraint equations. This system is under-
specified, and will usually have multiple solutions that satisfy the constraint equations.

This problem is simpler to solve than the more general problem of estimating O-D
demands for a network, as the problem of obtaining link use probabilities is avoided. The
routes are also known (i.e. each existing intersection leg, except the one by which the
demand enters the intersection, is a potential route), and it is the route weights (turning
movements) that are being solved for. The actual O-D demands are then determined by
applying these turning movements to the observed entrance flows.

Due to the simpler problem that isolated intersections pose, a significant amount of the
initial O-D estimation research focused on the estimation of static intersection turning
movements (Jeffreys and Norman, 1977; Van Zuylen, 1979; Norman et al., 1979; Bell,
1984b, and Martin et al., 1992)
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Figure 2-4: Estimating static turning movements for an intersection

2.4.3 Pre-specified vs. variable routes
Most existing solution approaches assume that the proportion of drivers between any origin i
and destination j using a particular route r is known and is independent of the amount of
traffic flow on route r. This assumption permits the link use proportions to be specified
independently from the O-D demands. Having assumed that routes are independent of flow,
most authors further assume that these unknown link use proportions have been
exogeneously defined. The problem then becomes one of estimating the unknown O-D
demands on the basis of the known link use proportions and the observed link traffic flows.

In reality, routes are typically not independent of the prevailing demand. Therefore, as
demand increases, congestion and delay on the selected route generally increase until some
point at which drivers will switch to another route having a lower travel cost. When O-D
demands are known, equilibrium and stochastic equilibrium assignment methods can be used
to develop routes that are consistent with these relationships.

If routes are not assumed to be fixed, link use proportions can no longer be determined
independent from the O-D demands. Due to this additional complexity, most O-D estimation
techniques assume fixed routes. Notable exceptions include a mathematical model proposed
by Fisk (1988 and 1989) that is based on game theory (Fisk, 1984) and combines user
optimum assignment with maximum entropy. This approach results in a bi-level
mathematical program for which an efficient solution algorithm does not yet exist.

Nguyen (1977 and 1984) also formulated an O-D estimation model based on the
assumption that routes were a function of the unknown demands. Unfortunately, the model
did not provide a unique solution. This method was subsequently extended (Turnquist et al.,
1979; LeBlanc et al., 1982; Sheffi et al., 1987), however, the extended method requires
accurate knowledge of the link travel times and of the relationship between link volume and
link travel time.

All current user and system equilibrium assignment formulations require that the
relationships of link travel time and link flow be known a priori and be a function. Most
researchers have assumed a BPR (Bureau of Public Roads, 1965) form of the travel time –
flow relationship (Equation [2-3]). However, for congested traffic networks, this relationship
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often does not accurately reflect the travel times experienced by drivers. This error is
particularly evident when considering the problem of estimating dynamic O-D demands.

( )( )βϕ C
Vtt += 10 [2-3]

where: t = total travel time (seconds)
t0 = free speed travel time (seconds)
ϕ = dimensionless parameter
β = dimensionless parameter
V = link flow (vph)
C = link capacity (vph)

A more recent approach (Yang et al., 1992) integrates generalized least squares with
equilibrium assignment. Again, this formulation leads to a bi-level mathematical program.
Recognizing that the bi-level programming problem cannot be efficiently solved, the authors
propose a heuristic iterative solution similar to that originally proposed by Hall et al. (1980).
However, there is no guarantee that this iterative heuristic provides a solution that satisfies
the constraints of the formulation.

It appears that, though a number of mathematical models, which consider routes to be a
function of demand, have been formulated, these models are difficult to solve for practical
sized networks. Approximate solution approaches can be used for practical sized networks,
however, these solution algorithms no longer guarantee that the constraints in the
formulation are met.

2.4.4 Static vs. dynamic approaches
The research reported in the literature, that has been discussed in this thesis thus far, has been
confined to methods for estimating static O-D demands. For operation and evaluation of
traffic management systems, it is beneficial to have knowledge of time varying demands.

Given the existing diversity of static demand estimation approaches and the lack of a
clearly superior method, it is not surprising that there has been much less work conducted
investigating the more complex task of estimating time varying demands. A comprehensive
summary of existing literature is provided by Cremer (1992).

Much of the work, that has been conducted to-date on estimating time varying demands,
has focused on the simpler task of estimating time varying turning movements at
intersections (Figure 2-5). This work has included using least squares (Cremer et al., 1987),
constrained optimization, recursive parameter estimation (Cremer, 1981 and 1984), and
Kalman filtering (Kessaci et al., 1989). Keller and Ploss (1987) extended the concept of
utilizing the coefficient of correlation by creating a methodology that combined static and
dynamic information. Results were generally favorable for intersections in which there
existed a high degree of correlation between entrance and exit flows. However, as expected,
when this degree of correlation decreases, accuracy of these methods rapidly deteriorates.
Furthermore, some methods experience problems with computational inefficiencies, or lack
the guarantee that formulated constraints are satisfied by the solution.

Procedures for estimating time varying demands for linear systems have also been
proposed (Chang et al., 1992). This method is based on using the extended Kalman filter,
however, the solution algorithm does not ensure that formulated constraints are met.
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Janson and Southworth (1992) have utilized a maximum entropy formulation to
determine the distribution of departure times for a known static matrix. Bell (1991b) has
proposed a method of estimating time varying demands in the presence of platoon dispersion.
This method utilizes constrained recursive least squares but the solution algorithm does not
ensure that estimates satisfy formulated constraints.

One of the only practical dynamic estimation methods proposed to-date that is applicable
to networks is that of Willumsen (1984). The entropy maximization formulation requires that
a feasible solution exists and that the link use probabilities be exogeneously defined.
However, due to the additional time considerations, the link use probability matrix becomes
five dimensional. For even moderate sized networks, computer memory requirements
become excessive. To avoid this limitation, Willumsen devises a heuristic solution approach
that utilizes the CONTRAM route choice and simulation model to provide the link use
proportions.

Recently, Cascetta et al. (1993) has proposed a generalized least squares dynamic O-D
estimator. This model was tested on a linear section of freeway in Italy, having 19 zones, 19
nodes, and 54 links. The actual demand was known, so comparisons between the estimated
demand and the true demand was possible. Observed flows were, however, generated from
the known demands, rather than observed on the links, eliminating the possibility of
inconsistencies in the observed flows. Furthermore, as the network was linear, the routes
were known exactly. The authors report that "results were generally satisfactory", however,
the known true demands are not provided, so it is not possible to replicate their results, nor
compare the performance of other methodologies against their results.

This lack of quantitative details is common in the research reported on in the literature.
Many approaches are formulated, but not illustrated, even for a very simple network.
Furthermore, for those approaches that are tested on a network, seldom is sufficient
information given to permit other researchers to replicate the reported results, or to apply
alternative methodologies to the same network in order to provide direct comparison of
performance. It is largely for this reason that few quantitative comparisons of models'
performances appear in this literature review. It is also likely for this reason that the objective
comparison of the performance of more of the various proposed models has not been
previously undertaken.
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Figure 2-5: Estimating time varying turning movements at intersections (Source:
Cremer, 1992)

2.5 Additional Issues
In addition to the four classifications discussed in Section 2.4, three additional issues, that
arise in the estimation of O-D demands, need be examined. The extent to which existing
models can approach each of these three issues is examined next.

2.5.1 Under- and over- specification
In theory, the problem of estimating O-D demands from link traffic counts is often under-
specified, resulting in multiple solutions that satisfy the observed link flow constraints.
Under these conditions, the problem of estimating O-D demands consists of two elements;
defining a set of feasible solutions, and selecting a single solution from the multiple solutions
that exist.

a. Multiple solutions exist that exactly replicate the observed link flows

One common method relies on the introduction of a convex likelihood function which is
then minimized. This approach has been adopted by a large number of authors but was most
prominently introduced by Van Zuylen and Willumsen (1980). Specifically, Van Zuylen and
Willumsen proposed two different, but related, O-D estimation formulations. Each
formulation was based on maximizing some measure of the likelihood of an O-D demand
matrix. One of the formulations was derived under the assumption that the unit of measure
was a trip, while the other assumed a link-count as the unit of measure. Since these two
models have made a significant impact on the current state-of-the-art of O-D estimation, and
because these two methods can be used as a starting point for the development of the two
models proposed in this thesis, the models developed by Van Zuylen and Willumsen will be
examined more closely in Chapter 3.
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The definition of a likelihood function relies on a mathematical statement of what
outcomes are most probable. However, reflecting actual driver behaviour trends within these
statements is often difficult. As the use of additional high quality information usually
improves the O-D estimate, researchers have incorporated knowledge of these patterns into
the estimation process. Robillard (1975) and others (Högberg, 1979; and Irving et al., 1986)
have imposed a structure to the estimated O-D by introducing a distribution model. Still
others have utilized additional information in order to select an appropriate matrix, such as a
trip length distribution (Chan, 1986), license plate survey data (Geva, 1983), cordon counts
(Landau, 1982), or a prior matrix (Van Zuylen, 1981). Usually, the use of additional
information has improved the accuracy of the estimated demand. Unfortunately, the
introduction of additional information requires that, for these methods to be of practical use,
these data be readily available. Differences between the solutions generated by different
likelihood functions will be examined in Chapter 3 of this thesis.

b. No solution exists that exactly replicates the observed link flows

In practice, due to the temporal nature of traffic flow and measurement error, observed
link flows are rarely consistent. Thus, there usually is no feasible O-D solution that can
exactly replicate the observed link flows. Methods that require at least one feasible solution
either assume consistent flows are available, or preprocess the observed link flows to create
consistent flows for which multiple solutions may exist (Van Zuylen and Branston, 1982).
Others, recognizing that often no one exact solution exists, have applied constrained and
unconstrained generalized least squares regression (Bell, 1991a; Cascetta, 1984; Hendrickson
et al., 1984a and 1984b), unconstrained optimization (Mekky, 1979), and log-linear models
(Bell, 1984a).

Unfortunately, some of these approaches cannot guarantee that the estimated O-D
demands will be non-negative, as the physical interpretation of the decision variables
requires. Others ensure that the solution is positive by truncation and projection
(Hendrickson and McNeil, 1984a and 1984b), however, the impact on the objective function
value of such intervention is not known. Though a feasible solution is achieved, it can no
longer be stated with certainty that the solution is optimal, nor is it known how close the
proposed solution is to the optimal solution. Furthermore, some of the proposed methods are,
by their authors' own admission, inappropriate for practical use, as the solution algorithm
requires the manipulation of very large matrices (Bell, 1991a).

Still other authors have explicitly treated link counts as random variables, usually
assuming that they have a Poisson distribution in order to take advantage of the characteristic
that the mean and variance are equal (Mauer, 1983; Davis and Nihan, 1991). Jörnsten and
Wallace (1993) propose a stochastic programming approach that explicitly recognizes that
the inconsistencies within the observed link flow data result from some unknown underlying
distribution of traffic flows. Unfortunately, when examining a time series of traffic flows, the
flow variance within each time period is likely to be a function of the level of demand, and
the traffic conditions on the network. One clearly expects to observe greater variance in flow
at high levels of flow, than at low levels of flow. However, under congested conditions,
observed variations in flow may be due solely to the movement of shockwaves, and not
reflect in any way, the magnitude, or reliability, of the true demands. An alternative approach
for dealing with link flow inconsistencies will be presented in Section 4.3.3.
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Despite the significant effort and the variety of approaches proposed, no one method has
been shown to be consistently significantly superior. However, a review of the literature
indicates that the use of maximum likelihood within model formulations is rather prevalent.
As such, it would seem prudent to examine likelihood more closely as it pertains to O-D
estimation. The maximum entropy and minimum information likelihood formulations, which
were introduced by Van Zuylen and Willumsen, are therefore examined in more detail in
Chapter 3.

2.5.2 Accuracy of estimated O-D demands
One difficulty that plagues all O-D estimation techniques is that of quantifying the accuracy
of the estimated O-D demand. This difficulty arises because the true O-D is, by definition,
usually unknown.

Empirical studies have been carried out in which the estimated accuracies of various O-D
estimation techniques are compared using either synthetic O-D data or O-D data gathered by
means of a survey (Han, 1983). The reported accuracies vary significantly, depending on the
network size, traffic conditions, and information made available to the estimation technique.
Unfortunately, the results of these empirical studies cannot be generalized to be applicable to
other networks, or even to different traffic conditions on the same networks.

Bell (1983a) has investigated the use of the variance in observed link counts in order to
determine confidence limits about the estimated static O-D. However, the method assumes
that the probability that a trip is between a specific O-D pair, given that a trip occurs, is
known. It is further assumed that link use probabilities are known exactly so that any ensuing
link flow error can be solely attributed to inaccuracies in the estimated demand. Neither of
these assumptions are likely to be met in practice. A second method proposed by Bell
(1983b) approximates the variance of static O-D estimates on the basis of the mean and
variance of link flows and by assuming that demands are log-normally distributed. It is not
clear that either of these two approaches can be generalized to the dynamic problem.

More recently, Bell (1985) has proposed that confidence intervals about the estimated O-
D can be computed assuming that demand follows a log-normal distribution and that the
variance and covariance of the prior matrix and link flows are known. Again, in practice,
these data are not likely to be known. In addition, concern has been recently raised as to the
appropriate manner in which variance - covariance matrices should be computed and how
they should be interpreted (Jörnsten and Wallace, 1994). In light of the temporal and spatial
variations in traffic flows, it is not clear what the variance - covariance matrices ultimately
mean.

Another approach estimates a quantity termed the maximum possible relative error
(Yang et al., 1991). This quantity is a measure of the maximum distance from the chosen
most likely solution to some other solution within the feasible region (Figure 2-6). This
approach assumes that link flows and route choice proportions are known exactly such that
any error is due only to choosing the incorrect solution from those within the feasible region.
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Figure 2-6: Graphical representation of maximum possible relative O-D
error

Despite these contributions, there remains no means of determining, in practice, the
accuracy of an estimated O-D demand. This lack of ability to quantify the accuracy of the
estimated O-D is only important if knowing an accurate O-D is important. Stokes and Morris
(1986) examined the effects of O-D accuracy on several network measures of performance
(MOEs). The FREQ traffic simulation model was used to simulate a freeway section for
which morning peak 15 minute O-D demands were first obtained through a survey and then
through synthetic estimation. The study concluded that total travel time, total travel distance,
and average network speed, were all insensitive to the distribution of the O-D demands.
However, in this study, only network aggregate measures of effectiveness were compared.
Also, since the total ramp flows were the same for both the observed demands and the
synthetic demands, and since in a linear system there are no re-routing opportunities, the only
impact that the distribution of demands has on the network is where congestion occurs. The
effects of demand distribution on network aggregate measures of effectiveness will then be
minimal. Thus, the results from Stokes et al., should not be generalized to be true for all
networks. Clearly, for non-linear networks, drivers' re-routing opportunities depend upon
their desired destinations.

It would appear then, that further research is required to examine in more detail the
impacts of inaccurate O-D demands on the operation and evaluation of traffic management
systems. Such an analysis is not performed in this thesis.

2.5.3 Use of a priori information
Many proposed approaches require the use of a priori information in the form of a seed
matrix in order to solve the multiple solution problem. It has been clearly demonstrated that
for these solution methods, the structure of the seed matrix has a significant impact on the
nature and accuracy of the estimated matrix (Lam and Lo, 1991). Unfortunately, few
guidelines exist to help practitioners select an appropriate seed matrix.

Bell (1984b) has proposed a method for obtaining a seed matrix and quantifying its
variance, but this method is only applicable for turning movements at intersections. Spiess
(1987) has proposed a method that treats the elements of the seed matrix as observations
from independent Poisson distributions with unknown means. Assuming that link flows are
consistent and known exactly, Spiess presents a method that utilizes the maximum likelihood

Most likely solution

Feasible Region

Maximum possible relative error
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concept to determine the unknown means of the cells within the seed matrix. It can then be
statistically determined if the estimated matrix satisfies the observed link flows.

Van Zuylen and Willumsen (1980) have proposed two maximum likelihood models that
both rely on the use of a seed matrix. The formulations use the seed matrix as an initial
target, but, as noted by other researches (Bell, 1984a; Jörnsten, 1994; Maher, 1983), maximal
belief is placed in the observed flows and minimal belief is placed in the seed matrix.

It would appear from the literature, that provision for the use of a seed matrix is
desirable, as it permits the updating of an out-dated matrix, or the incorporation of
information from a partial matrix. However, there is a need to permit the specification of the
reliability of each cell within the seed matrix when compared with other cells and when
compared with the observed link flows, and to explicitly accommodate these relative levels
of reliability within the O-D estimation process.

2.6 Summary
The previous examination of the existing body of literature has shown that many different
approaches have been proposed for the estimation of static O-D demands. From this range of
proposed methods it can also be concluded that no one single method is clearly superior to
all others. It would appear, however, that despite some undesirable characteristics, the use of
a maximum likelihood formulation is not only common to many approaches, but it is also
preferred by many.

Significant concerns have been raised over the lack of control which practitioners have
over specifying the impact of the accuracy of seed matrices, particularly in view of how
significantly the seed matrix affects the final estimated O-D demand.

Little work has also been conducted investigating the impacts of utilizing inaccurate O-D
demands for network control and/or evaluation. Some reported research indicates that MOEs
are insensitive to changes in O-D in a linear corridor, however, these results cannot likely be
generalized to a complete two dimensional network.

It is clear, that any successful O-D estimation model must have a sound mathematical
basis, such that the objective of the model, and the method used to achieve this objective, can
be clearly and concisely stated. Furthermore, the assumptions made within the mathematical
formulation must be reasonable with respect to known field conditions. There is little value
in formulating a model on the basis of an assumption, that must be subsequently violated in
order to apply the model in practice.

Many of the proposed static and dynamic O-D estimation methodologies presented in the
literature are mathematically formulated but are often only solved using algorithms that
provide approximate solutions. The magnitude of the error that is introduced by these
approximations is seldom known, estimated or even considered. In some cases, it is not clear
if the benefits being sought by these complex mathematical formulations may not be negated
by the approximations made in the solution algorithms.
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CHAPTER 3

ANALYSIS AND COMPARISON OF TWO
MAXIMUM LIKELIHOOD APPROACHES

3.1 Introduction
The literature review in Chapter 2 has shown that numerous O-D estimation approaches have
been proposed. Despite the number of proposed methods, no single method has proved to be
conclusively or consistently superior to all others. However, an element common to many of
the proposed estimation methods, is the use of a maximum likelihood objective function in
order to select a preferred solution when many solutions are feasible. Two significant
maximum likelihood models, one which is trip based and the other which is vehicle-count
based, will be examined in this chapter.

3.1.1 Background
Two of the best known O-D demand estimation models are the maximum likelihood models
originally developed by Van Zuylen and Willumsen (1980). Their derivation is examined in
detail here for several reasons.

First, these two models are considered by many to be the standard against which most
other approaches are compared. In order to understand the important characteristics of these
two models, the various explicit and implicit assumptions that are made during the models'
derivations must first be identified and understood.

Second, the two synthetic O-D estimation methods proposed in Chapters 4 and 5 will be
compared with these two approaches at both a theoretical and performance level. To carry
out a theoretical comparison, the theory on which these two maximum likelihood methods
are based must therefore also be fully understood.
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Third, the literature describing the models proposed by Van Zuylen and Willumsen
provide only a brief description of the derivation of the models. While some mathematicians
might find this level of detail adequate, it is likely that most engineers would need to invest a
significant amount of time and effort before the practical impacts of the theoretical bases,
assumptions, and approximations could be fully appreciated.

Therefore, the ultimate merit in carrying out a complete derivation is twofold. A
complete derivation will show conclusively the mathematical consistency (or inconsistency)
of the formulated model, and second, all assumptions and approximations within the
derivation can be more clearly identified and subsequently challenged.

3.1.2 Structure of chapter
Two separate, but similar models are described in this chapter. The first model, derived using
information theory, is based on the premise that vehicle counts on links are the fundamental
unit of observation. The second model, derived from entropy considerations, is based on the
premise that trip counts are the fundamental unit of observation. That one model is
developed based on information theory, while the other is based on entropy theory, is not
critical, since both theories are intimately related. The prime differences in the models arise
from the differences in the observation unit adopted  a trip in the entropy model and a
vehicle count on a link in the information model, and differences in their solutions arise
when networks exhibit biases that affect one measurement unit differently from the other.

A general form of the information minimization model is developed first in Section 3.2,
and then adapted in Section 3.3 to the specific task of estimating O-D demands from vehicle
counts on links. The complete mathematical derivation and formulation of the objective
function and constraints is then provided in Section 3.3.1. The characteristics of the
formulation are also illustrated through the use of a simple example network in Section 3.3.2.
A similar development of the entropy maximization trip-count based model is subsequently
presented in Section 3.4. Again, the mathematical formulation is provided, and illustrated
using a simple example network.

A comparison is made between the entropy maximization and information minimization
approaches. Theoretical differences are discussed as well as the practical implications of
these differences. These implications are illustrated for a variety of scenarios using a simple
example network. Finally, conclusions are made regarding the theoretical and practical
strengths and weaknesses of the models, as well as the suitability of the two approaches for
estimating O-D demands.

3.2 Generalized Model

3.2.1 Introduction
Approximately four decades ago, a new theory of information, having much in common with
statistical thermodynamics, was developed. Both information theory and thermodynamics
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have been applied primarily to the fields of chemistry and physics, however, these concepts
have also been found to be useful for the estimation of O-D demands in a traffic network
context.

Without presenting a lengthy discussion on the theoretical and philosophical aspects of
information and entropy, it is sufficient to state that information is equal to negative entropy
(Brillouin, 1964). Of course, this definition is only useful if entropy is already defined.
Entropy, in the context of thermodynamics, is a measure of the quality of energy in a system.
Entropy increases as the quality of energy decreases. For the purposes of this research, it is
more appropriate to view entropy as a measure of the likelihood of the system's state. This
definition is consistent with the formal thermodynamic definition, as poor quality energy
sources (i.e. heat) are more likely than high quality sources (i.e. electrical energy).

Starting from this conceptual framework, one can then proceed to develop a generalized
mathematical formulation based on information theory. In the next section this general
formulation is adopted for the express purpose of estimating O-D demands.

3.2.2 Mathematical derivation
Brillouin (1962) defines the quantity of information that is contained within a sequence of
entity states as being

I = K ln G [3-1]
where: I = the quantity of information

K = a constant
G = the number of equally probable outcomes

In information theory, the constant K, is used to transform the dimensionless information
quantity into a quantity having some units. However, as for optimization purposes, the
objective function which contains the expression of information is maximized, constants
within the objective function do not impact the optimum. Therefore, it is sufficient to define
information as

I = ln G [3-2]
In order to quantify the information content in a problem, it is necessary to derive an

expression for G, the number of equally possible outcomes.
Brillouin (1962) indicates that an expression for G can be derived on the basis of the

number of ways in which each possible state outcome can occur. To illustrate this approach,
consider the simple example illustrated in Figure 3-1 in which only two states exist;
represented by A and B. Consider a total of N observations of which nA are state A and nB are
state B. Then, as expressed in Equation [3-3a], the number of ways that these nA state A
observations can occur is just the number of combinations of N items taken nA at a time.
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Figure 3-1: Illustration of a simple example having two possible outcomes

Equation [3-3a] is only valid if each outcome is equally likely. To relax this constraint, it
is desirable to explicitly incorporate the probability of each outcome into this definition of G.
Using the current example, let qA and qB be the probability that state A and state B
respectively occur. Then, the probability of observing exactly one state A outcome is, by
definition, qA. Assuming that events are independent, the probability of observing two state A
outcomes is the product of their respective probabilities (qA · qA). It follows then, that the
probability of observing nA state A outcomes must be equal to An

Aq .

The expression for G in Equation [3-3a] becomes the number of ways in which the
outcome could occur, weighted by the probability of each outcome occurring (Equation
[3-3b]), which can be algebraically simplified to produce Equation [3-3c].
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where: G = number of equally probable outcomes
G' = number of outcomes weighted by the probability of occurrence
N = total number of observations
nA = number of state A outcomes
nB = number of state B outcomes
qA = probability that state A occurs
qB = probability that state B occurs

It is of interest to examine Equations [3-3a] and [3-3c] by way of a simple example in
which there are two outcomes and 40 observations. Figure 3-2 illustrates the values of the
natural logarithm of G and G' for all possible outcomes when the probability of each
outcome occurring is equal (qA = qB = 0.5). The two equations provide different estimates of
the information contained in each outcome, however, the maximum of each expression
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occurs for the same outcome, namely nA = nB = 20. This result is consistent with intuition, as
the most likely split between two equally likely states is 50% of each state.

Having shown mathematically, and illustrated by way of example, the relationship
between Equations [3-3a] and [3-3c], it is useful to illustrate the effect of outcomes that are
not equally likely. Consider an example in which there are two outcomes and 40
observations. In the first instance, both outcomes are considered to be equally likely (qA = qB
= 0.5), while in the second instance, state A has a 75% likelihood of occurring (qA = 0.75; qB
= 0.25). For each scenario, Figure 3-3 illustrates the measure of information contained in
each possible outcome, computed using Equation [3-3c]. When the outcomes are equally
likely, the information content is maximized when the number of state A and B outcomes are
equal. When state A has a 75% likelihood of occurring, the information content is maximized
when 30 state A and 10 state B outcomes are observed. The 30 state A outcomes represent
75% of the total 40 observations, while the 10 state B outcomes represent 25% of the 40
observations. Thus, it has been shown, by way of a simple example, that Equation [3-3c] is
appropriate for situations in which outcomes are equally probable and when outcomes are
not equally probable.

Figure 3-2: Comparison of the information content contained within a possible
outcome under the assumption that outcomes are equally likely (ln(G))
and that outcomes are weighted by their likelihood of occurring (ln(G'))
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Figure 3-3: Comparison of the information content contained within possible
outcomes under the assumption that the two outcomes are equally
likely and under the assumption that state A has a 75% likelihood of
occurring

Equation [3-3c] has been developed under the assumption that only two states exist. This
expression can be generalized, as indicated in Equation [3-4a], to describe situations in
which Z possible states exist. For each term in Equation [3-4a], the factorial (N-ni)! in the
numerator, can be divided by the same factorial in the denominator of the previous term, to
form Equation [3-4b]. The remaining terms can then be simplified to form Equation [3-4c].
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where: G' = number of outcomes weighted by the probability of occurrence
N = total number of observations
n1 = number of state 1 outcomes
n2 = number of state 2 outcomes
nZ = number of state Z outcomes
q1 = probability that state 1 occurs
q2 = probability that state 2 occurs
qZ = probability that state Z occurs

Substituting Equation [3-4c] into Equation [3-2] results in a measure of information as
expressed by Equation [3-5a], which can be expanded to produce Equation [3-5b].
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where: N = number of observations
k = a particular state
nk = number of times state k outcomes are observed

Since factorials are difficult to compute, even for relatively small numbers, Stirling's
formula (Wilson and Kirkby, 1975), expressed in Equation [3-6], may be used as an
approximation. Substituting Equation [3-6] into Equation [3-5b] results in Equation [3-7].
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where: N = number of observations
k = a particular state
nk = number of times state k outcomes are observed

The sum across all states k, of the number of observed outcomes of each state (nk), must
be equal to the total number of N observations (Equation [3-8]). Substituting Equation [3-8]
into Equation [3-7b] provides Equation [3-9], which, after algebraically simplifying, provides
Equation [3-10], the generalized form of the measure of information contained in a set of N
observations.

In Equation [3-10], it is convenient to have the term nk in the numerator within the
natural logarithm rather than in the denominator. This inversion is possible as ln(x) = -
ln(1/x), leading to Equation [3-11], the final generalized expression for information
contained within N counts.
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where: N = number of observations
k = a particular state
nk = number of times state k outcomes are observed

3.3 Vehicle Link-Count Based Model

3.3.1 Model formulation
The general expression of information, provided in Equation [3-11], must be further
specialized for the task of estimating O-D demands. Following the vehicle link-count based
derivation presented by Van Zuylen and Willumsen (1980), consider the state k to be a
particular origin - destination pair that a vehicle is associated with. Then, the number of
vehicles observed on link a, that are traveling between origin i and destination j, can be
expressed as the total demand between i and j multiplied by the probability that demand
between i and j uses link a (Equation [3-12]).

a
ijij

a
ij PTn = [3-12]

where: nij
a = number of vehicles counted (outcomes) on link a that are associated

with origin i and destination j (state k) (vph)
Tij = true demand between origin i and destination j (vph)
Pij

a = probability that demand between i and j will use link a
Without any information to the contrary, one can assume that a vehicle observed on a

link is as likely to be traveling between one O-D pair as any other. However, if information
regarding the current O-D demand patterns is available, then it is possible to compute this
probability directly. Following Van Zuylen and Willumsen (1980), it is assumed that the
probability of observing a vehicle, traveling between zones i and j, on link a, can be
estimated to be equal to the proportion of the prior link flow associated with a specific O-D.

( )∑
=

ij

a
ijij

a
ijija

ij Pt
Pt

q [3-13]
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where: tij = prior estimate of demand between origin i and destination j (vph)
Pij

a = probability that demand between i and j will use link a
qij

a = prior probability that counts on link a are associated with origin i
and destination j

If, the denominator of Equation [3-13], is represented by Sa, as defined by Equation [3-
14], then, the information contained in V'a vehicle counts, observed on a single link a, can be
determined by substituting Equations [3-12] and [3-13] into Equation [3-11] to produce
Equation [3-15].

S t Pa ij ij
a

ij

= ∑ [3-14]
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



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




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







′

−≈
ij ija

ijaa
ijija tV

TS
PTI ln [3-15]

where: V'a = total number of observed vehicle counts on link a (vph)
tij = prior estimate of demand between origin i and destination j (vph)
Tij = unknown current demand between origin i and destination j (vph)
Pij

a = probability that demand between i and j will use link a
The information contained in the link traffic counts on a number of links, which is

expressed by Equation [3-16], is simply the sum of the information contained within the
individual link counts.

The objective is to determine values for Tij that will maximize the information content of
the estimated demand. Formally, this is accomplished by maximizing the total information
subject to the constraint that the estimated O-D demands satisfy the observed link flow
constraints. Since the expression for information is a negative quantity, it is convenient to
multiply the expression by -1 and then to minimize I, as shown in Equations [3-17] and [3-
18]. Equations [3-17] and [3-18] represent the final form of the model formulation originally
presented by Van Zuylen and Willumsen (1980).
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ijaa
ijij tV

TS
PTI ln [3-17]

subject to ∑=′
ij

a
ijija PTV [3-18]

where: V'a = total number of observed vehicle counts on link a (vph)
tij = prior estimate of demand between origin i and destination j (vph)
Tij = unknown current demand between origin i and destination j (vph)
Pij

a = probability that demand between i and j will use link a
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3.3.2 Analytical solution for a simple network
A number of approaches may be used to solve the mathematical formulation expressed by
Equations [3-17] and [3-18]. First, the constraints expressed in Equation [3-18] may be
algebraically incorporated into the objective function, such that the objective function is
expressed as a function of a single unknown variable. Then, since the objective function is
convex, and the constraints are linear, the first order derivative may be used to find the global
minimum or maximum.

A second approach is to form the Lagrangian in order to combine the constraints and the
objective function into a single expression. This method avoids having to explicitly express
the constraints in terms of a single unknown, and so can be used even when the objective
function and constraints are complex expressions. The partial derivatives of the Lagrangian
with respect to the unknown quantities and the Lagrangian multipliers provide the global
minimum and maximum.

Both of the above two approaches are of limited practical use when dealing with even
medium sized traffic networks, as they require a large number of equations to be
algebraically solved in order to determine the optimal solution. A third approach that
attempts to avoid these problems is the utilization of an iterative algorithm that solves the
mathematical model formulation numerically. Ideally, this algorithm will exactly meet all of
the mathematically formulated constraints and is guaranteed to converge to a unique
solution. However, in practice, the algorithms that are available often do not necessarily meet
these idealized goals.

An algebraic solution can be examined in terms of the simple two-link network presented
in Figure 3-4. A general formal solution, obtained by forming the Lagrangian, is developed in
Section 3.3.3.

Figure 3-4: Simple example two-link network

For this network, only three O-D demands (TAB, TAC, and TBC) are feasible. If the
unknown demand from zone A to zone C is represented by x, then for this network, the
remaining two demands that satisfy the link flow constraints can be explicitly defined in
terms of x (TAB = 16-x, TAC = x, and TBC = 18-x; T = Σ Tij = 34-x).

To determine the most likely demands, we find those demands that minimize Equation
[3-17]. First, we define Sa for both of the links in the network using Equation [3-14].

ACAB ttS +=1 [3-19a]

BCAC ttS +=2 [3-19b]

where: tij = prior demand between origin i and destination j (vph)

A B
1 2

C Zone Identifiers
Link Identifiers
Observed Link Flows16 18
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Substituting the expressions for tij and Sa into Equation [3-17] for each link separately
results in Equations [3-20a] and [3-20b].

( ) ( ) ( )( )




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( ) ( ) ( )( )





 +−−+




 +≈
BC

BCAC

AC

BCAC

t
ttxx

t
ttxxI

18
18ln18
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ln2 [3-20b]

To determine the demand that results in the minimum information, it is necessary to
differentiate I with respect to x, the only remaining unknown, as tij, the a priori information,
must already be known.

x
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x
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x
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∂ 210 +== [3-21a]
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Substituting Equations [3-21b] and [3-21c] into Equation [3-21a] and simplifying, results
in the following quadratic equation.

( ) ( ) 028834 2222 =+−− ACACBCABAC txtxttt [3-22]

Examination of Equation [3-22] reveals that, when no a priori information is available
(i.e. when tAB = tAC = tBC), then the equation simplifies to

x ≈ 288/34 = 8.47 [3-23]
For this example network, Equation [3-23] holds true whenever the prior matrix is

uniform, regardless of the magnitude of the matrix. However, when prior information exists,
the prior matrix is not uniform, and the final solution is dependent on the a priori
information.

For this example then, the demand matrix which minimizes the objective function, as
defined in Equation [3-17], is TAB = 7.53, TAC = 8.47, TBC = 9.53, and T = Σ Tij = 25.53.

Figure 3-5 illustrates the objective function (Equation [3-17]) for various estimated O-D
demands when no prior information is available. As expected, the objective function is
convex and its minimum is located at TAC = 8.47.

Consider another case in which there is prior information, but this information is in the
form of a matrix which is already a feasible solution. It is desirable to determine what the
optimal solution is when the prior matrix is already a feasible solution. Figure 3-6 provides
the surface reflecting the behaviour of the objective function over the feasible range of the
prior matrix and the estimated demand matrix. It can be seen that for any feasible prior
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matrix, the minimum objective function value occurs for a matrix that is exactly equal to the
prior matrix. This means that any prior matrix that is feasible, is also the most likely. It
should be noted that for both the prior matrix and the estimated matrix, the feasible solution
space is defined as the set of O-D demands that exactly replicate the observed link flows.

Figure 3-5: Information objective function as a function of estimated demand when
no prior information exists

Figure 3-6: Information objective function magnitude as a function of feasible a
priori matrices and estimated demand
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Figure 3-7: Information objective function as a function of estimated demand when
prior information exists but this prior demand is not a feasible solution.

When a priori information exists but is not in the form of a feasible solution, then the
solution which minimizes the objective function is different from the a priori information
and different from the solution that would be optimal if no a priori information were
available. Consider again the previous example network. Assume that the prior information
indicated that tAC=10, tAB=10, and tBC=4. This demand matrix is not a feasible solution in
this case, so it also cannot be the demand which minimizes the objective function. Figure 3-7
illustrates the objective function curve for the range of feasible estimated demands.
Analytically, this situation can also be solved using Equation [3-22], resulting in TAC=10.37,
TAB=5.63, TBC=7.63 and T=Σ Tij = 23.63.

3.3.3 Formal solution
The solution to the formulated model can be obtained by differentiation of the Lagrangian.
The Lagrangian permits the incorporation of the constraints and objective function into a
single expression, for which the minimum can be found.
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where: V'a = total number of observed vehicle counts on link a (vph)
tij = prior estimate of demand between origin i and destination j (vph)
Tij = unknown current demand between origin i and destination j (vph)
Pij

a = probability that demand between i and j will use link a
λa = Lagrange multiplier for link a

We can determine the global minimum by taking the partial derivatives of L(Tij) with
respect to each of the unknown O-D demands (Tij).
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Setting g Pij ij
a
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but,
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and, since
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Substituting Equation [3-28] into Equation [3-25f] produces,
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then,

( )∏=
a

g
P

aijij
ij

a
ij

XtT [3-30b]

where: V'a = total number of observed vehicle counts on link a (vph)
tij = prior estimate of demand between origin i and destination j (vph)
Tij = unknown current demand between origin i and destination j (vph)
Pij

a = probability that demand between i and j will use link a
gij = Pij

a

a
∑

Xa = defined in Equation [3-30a]
Equation [3-30b] is the same as Equation [21] provided by Van Zuylen and Willumsen

(1980).

3.4 Trip-Count Based Model
As indicated in Section 3.2, entropy is equivalent to negative information. As such, the
mathematical formulation for the estimation of O-D demands based on entropy is very
similar to that based on information theory. However, in this section we examine, and
present, the development of a trip-count based model originally developed by Van Zuylen
and Willumsen (1980) on the basis of entropy considerations.

3.4.1 Model formulation
Since entropy is a measure of negative information, we may begin the development of the
trip based model from Equation [3-11] which is reproduced below.

∑ 











≈−=

k k

k
k Nq

nnIW ln [3-31]

where: W = measure of entropy
I = measure of information
N = number of observations
k = a particular state
nk = number of times state k outcomes are observed
qk = the probability that state k occurs

For this model, we consider state k to be the origin - destination pair that a trip (not a
vehicle count) is associated with. It follows then, that the number of times that state k
outcomes are observed, is equal to the demand between i and j (Equation [3-32]). As
indicated in Equation [3-33], the total number of observations is equal to the total number of
trips.

nk = Tij [3-32]
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∑ ∑===
ij k

kij nNTT [3-33]

where: T = total number of trips
Tij = Demand between origin i and destination j
N = number of observations
k = a particular state
nk = number of times state k outcomes are observed

The prior probability that a trip is associated with a particular O-D pair can be
determined from a prior demand matrix. The probability that a trip is associated with origin i
and destination j is equal to the proportion of the total prior demand that was associated with
i and j (Equation [3-34]).

∑
=

ij
ij

ij
ij t

t
q [3-34]

where: qij = the probability that a trip is between origin i and destination j
tij = prior demand between origin i and destination j

The trip based model is determined by substituting Equations [3-34], [3-33] and [3-
32] into Equation [3-31] to produce Equation [3-35].
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The objective is to maximize Equation [3-36] subject to the constraint that the estimated
O-D demand satisfies the observed link flow constraints.

If the total number of trips in the network (T) is known, then the terms involving T are
constant and do not affect the location of the maximum. Van Zuylen and Willumsen (1980)
make this assumption with the result that they minimize Equation [3-38].
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where: W = measure of entropy
T = total number of trips
Tij = demand between origin i and destination j
qij = the probability that a trip is between origin i and destination j
Pij

a = the probability that demand between i and j will use link a
Va = the observed flow on link a

Van Zuylen and Willumsen do not, however, examine the validity of this assumption, or
the potential impacts that it may have on the selected optimum. Their lack of investigation
implies that the objective function expressed in Equation [3-38] produces the same solution
as Equation [3-36]. This is indeed not true, as will be demonstrated in Section 3.5.

3.4.2 Formal solution
The formal solution to the trip based model is similar to that of the link-count based model
presented in Section 3.3.3. The complete derivation of the formal solution is not shown here,
but the resulting solution is given by Van Zuylen and Willumsen (1980) as Equations [3-39a]
and [3-39b].
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a
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aijij

a
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where: Tij = demand between origin i and destination j
tij = prior demand between origin i and destination j
Pij

a = the probability that demand between i and j will use link a
λa = Legrange multiplier for link a

A comparison between the formal solution of the trip based entropy model (Equations
[3-39a] and [3-39b])and the link-count based information model (Equations [3-30a] and
[3-30b]), indicates that the two formal solutions are very similar.

3.5 Examination of Model Assumptions
In this section, two of the assumptions made in the development of the formulation of the
likelihood models discussed in this chapter, will be examined. The first assumption, that
Stirling's approximation is sufficiently accurate, is made in the development of both the
vehicle-count and the trip-count based models. The second assumption, that the total number
of trips is constant, is only made for the trip based model. Each of these assumptions is
discussed in detail below.
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3.5.1 Stirling's approximation
Van Zuylen and Willumsen (1980) used the following form of Stirling's approximation in the
derivation of their link-count based information minimization model and their trip-count
based entropy maximization model.

( ) ( ) XXXX −≈ ln!ln [3-40]

However, a more accurate representation of Stirling's approximation is provided in
Equation [3-41] (Feller, 1966).

( ) ( ) ( ) ( ) XXXX −++≈ ln5.02ln5.0!ln π [3-41]

A comparison of the accuracy of each of these approximations is provided in Figure 3-8.
It is clear from this figure that Equation [3-41] provides a better estimate of ln X! than does
Equation [3-40]. However, as the ultimate goal is to find the O-D demand that maximizes the
objective function, it is the derivative, not the absolute magnitude of the objective function
that is of interest.

The derivative of Equation [3-40] with respect to X is simply ln(X). The derivative of
Equation [3-41] is ln(X) + 1/(2X). The difference between these two derivatives is the term
1/(2X) which becomes increasingly smaller as the magnitude of X increases. As illustrated by
Figure 3-8, when X is larger than 60, the additional approximation error incurred by using
Equation [3-40], instead of the more accurate Equation [3-41], is approximately 2%. If the
estimated demands between each origin and destination are sufficiently large (i.e., greater
than 60 vehicles), then it can be reasonably assumed that the error incurred by using the less
accurate representation of Stirling’s approximation will not have a significant impact on the
resulting solution.

Figure 3-8: Quality of two different versions of Stirling's approximation
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3.5.2 Total number of trips
The second area of concern is the assumption that the total number of trips is constant, and
therefore can be eliminated from the objective function. Consider once again the two-link
example network illustrated earlier in Figure 3-4. For this network, the entropy can be
computed for each feasible O-D demand. We simplify the illustration by assuming that prior
information is not considered so that the entropy can be defined by Equation [3-42a]. To
facilitate computation, we take the natural logarithm of W and make use of Stirling's
approximation (Equation [3-40]) to obtain Equation [3-42b].

If it is assumed that the total number of trips T, is constant, then T does not impact the
determination of the O-D demand that maximizes the objective function, and as such can be
omitted from the objective function (Equation [3-42c]).

!
!

ijij
T
TW
π

= [3-42a]

( )∑ −−−==
ij

ijijij TTTTTTWS lnlnln [3-42b]

( )∑ −−=
ij

ijijij TTTS ln' [3-42c]

where: W = measure of entropy
T = total number of trips (vph)
Tij = demand between origin i and destination j (vph)
S = log transformation of W
S’ = log transform of W assuming T is constant and can be omitted

Figure 3-9 illustrates the values of the objective function when the total number of trips
is considered variable (Equation [3-42b]) and when the total number of trips is considered to
be constant (Equation [3-42c]). It is clear from Figure 3-9 that the two objective functions
provide radically different solutions for this example. The feasible solution that maximizes
the entropy when T is considered constant is TAB = 3, TAC = 13, and TBC = 5. When T is not
held constant a different O-D solution (TAB = 11, TAC = 5, and TBC = 13) is found to
maximize the entropy. The occurrence of two different O-D solutions, that are both
considered to maximize the entropy, indicates that maximizing Equation [3-42b] is not
equivalent to minimizing Equation [3-42c]. The occurrence of this discrepancy is not limited
to this specific example. It can be shown that two different entropy maximizing O-D
estimates exist for other networks as well, leading to the conclusion that this discrepancy
may exist in any network.
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This leads to somewhat of a quandary, as the model formulation requires that the total
number of trips be known, yet in practice, this quantity is rarely known. It is suspected that
many practitioners have utilized this trip based method, without knowledge of the total
number of trips, and have accepted the demand estimates as being the most likely, when in
fact, they were not.

Figure 3-9: Comparison of alternative assumptions about the total number of trips

3.6 Comparison of Methods
The previous sections in this chapter have presented the derivation of a trip based and a link-
count based maximum likelihood model. It has been shown that the theoretical bases of these
two approaches are very similar, however, some differences do exist between them. These
differences will be examined by comparing O-D estimates from the two approaches, for a
variety of scenarios. Special attention will be given to assessing whether the solution
algorithm is consistent with the formal solution. These comparisons are based on two simple
networks.

3.6.1 Example networks
To facilitate comparisons between the two likelihood estimation methods, it is useful to
define two simple networks, which may be used to illustrate the characteristics of the
models. Figure 3-10 depicts two such simple networks; a three zone, two-link network, and a
four zone, four-link network. These two networks were chosen, as they have also been used
by Van Zuylen (1981), to illustrate several peculiar characteristics of the trip based and the
link-count based models. Furthermore, these networks will be used in Chapters 4 and 5 to
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illustrate the characteristics of the models proposed in this thesis and to compare their
performance with that of the trip based maximum entropy model and the link-count based
minimum information model.

It should be noted that, in general, multiple O-D solutions will exist for both of these
networks, as no O-D demand has sole use of any single link. For the comparisons carried out
in this chapter, it is assumed that link flows are known exactly. The network structure also
precludes the analysis of the impacts of multiple routes, however, these effects will be
examined later in this thesis.

The assumed prior matrix (seed matrix) and actual O-D demands and the observed flows
for each network are provided in Table 3-1 . These values are the same as those presented by
Van Zuylen (1981).

Figure 3-10: Two simple networks used to illustrate several characteristics of the
link based entropy and link-count based information model
formulations

Table 3-1: Characteristics of example networks
Two-Link Network Four-Link Network

O-D A-B A-C B-C A-C A-D B-C B-D
Seed 3 5 4 10 15 8 20
True 6 10 8 15 10 8 20
Link 1 2 1 2 3 4

Obs. Flow 16 18 25 28 23 30

3.6.2 Effect of prior information
The solution algorithms for the trip based and link-count based maximum likelihood models
proposed by Van Zuylen and Willumsen (1980) require the presence of a prior matrix. This
matrix need not contain any information regarding the true O-D demand patterns (i.e. all
cells may have equal magnitude), but it must exist. The question of interest is whether the
magnitude of this prior matrix has any impact on the estimated O-D solution. Van Zuylen
(1981) has shown, using the two-link network illustrated in Figure 3-10, that the trip based
model is sensitive to the magnitude of the prior matrix. Table 3-2 provides the demands
resulting from both the trip based and link-count based maximum likelihood models for five
different scenarios. Each scenario assumes a different seed matrix.
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In Scenario 1, the seed matrix is 50% of the true demand. The link-count based model
correctly estimates the true demand, however, the trip based model estimate is not equal to
the true demand. This same scenario is examined by Van Zuylen (1981), who concluded that
trips that are only counted once (i.e. demands A-B and B-C) are underestimated by the trip
based model, while trips that are counted twice are overestimated. In fact, according to Van
Zuylen, other researchers have also determined that the trip based maximum likelihood
model described by Equation [3-39] tends to overestimate trips that are counted more
frequently than the average (Smit, 1980; Willis and Chan, 1980).

Scenario 2 examines the impact of the magnitude of a uniform matrix on the most likely
O-D matrix estimated by both of the maximum likelihood models. Scenario 2a has a uniform
matrix with a magnitude of 10 in each cell. The total number of trips represented by this seed
matrix is 30, which is greater than the 24 trips represented by the true demand matrix. The
trip based and link-count based models provide different estimates of the most likely demand.
Though the two solutions are different, it is not clear which of the two formulations actually
provides the most likely demand from a practical point of view. Some insight is provided by
the results from Scenarios 2b and 2c. The demand that is proposed by the link-count based
model as the most likely demand does not vary with changes in the total number of trips
represented by the uniform seed matrix. However, the results from the trip based model
indicate that it is sensitive to the magnitude of the seed matrix. It is interesting to note, that
for Scenario 2b, in which the seed matrix contains the same number of trips as the true
matrix (24), the trip based model produces results that closely replicate those provided by the
link-count based model. For Scenario 2c, the total number of trips in the seed is less than the
number of trips in the true demand matrix. The trip based model demand estimate is again
different from the link-count based model estimate.

The results from Scenarios 2a, 2b, and 2c indicate, that when the number of trips within
the seed matrix is less than the number of trips within the true matrix, the trip based model
underestimated short trips (O-D demand A-B and B-C) and overestimated long trips (A-C).
When the number of trips in the seed matrix exceed the actual number of trips, the trip based
model overestimated short trips and underestimated long trips.

The results from Scenario 2c may also be examined with respect to the trip based model
formulation expressed earlier in Equation [3-38], which indicates that the entropy measure,
W, is a function of only Tij and qij. Prior information is incorporated into the term qij, which
is the ratio of the prior demand between i and j to the total number of trips represented by the
entire prior matrix. Since qij is a ratio, only the magnitude of tij relative to Σtij has an impact
on qij, implying that Equation [3-38] is insensitive to the total number of trips represented by
the seed matrix. This insensitivity of Equation [3-38] to the number of trips in the seed
matrix is inconsistent with the properties of the algorithm used to solve Equation [3-38], as
evident by the results in Table 3-2.

Van Zuylen (1981) reports that though Murchland (1977) has shown that the multi-
proportional problem has a unique solution, no mathematical proof is available that the
solution algorithm used by Van Zuylen to solve Equation [3-38] ultimately converges.

Scenario 3 indicates that both models provide similar results for a non-uniform seed,
which is not a multiple of the true demand, but has the same total number of trips as the true
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demand. Since the seed matrix in Scenario 3 does not satisfy the link flow constraints, and
since it is also not a multiple of the true demand, the solutions provided by both models are
not equal to the true demand. This is to be expected, as the seed matrix provides an initial
starting point for the search for a feasible solution.

Van Zuylen (1981), having recognized the inappropriate sensitivity of the trip based
model to the number of trips in the seed matrix, proposed a modification to the original
solution algorithm. This modification consists of incorporating a scaling factor based on the
ratio of the total number of trips in the true matrix to the total in the seed matrix. Of course,
in practice, the true matrix is not known. As a surrogate measure, Van Zuylen relies on the
ratio of all of the observed link flows, to the total link flows resulting from the seed matrix.
This modified trip based entropy model is stated to be insensitive to the multiplication of the
seed matrix by a constant factor α. Van Zuylen states that the convergence of the modified
solution algorithm is "reasonably good", however, no quantitative measures of performance
are provided.

Table 3-2: Maximum likelihood O-D estimates for a two-link example network
Scenario Seed Demand Estimated Demand

Total Trip Based Total Link-count based Total
A-B A-C B-C Trips A-B A-C B-C Trips A-B A-C B-C Trips

1 3 5 4 12 4.38 11.62 6.38 22.38 6.00 10.0 8.00 24.00
2a 10 10 10 30 8.00 8.00 10.0 26.00 7.53 8.47 9.53 25.53
2b 8 8 8 24 7.37 8.63 9.37 25.37 7.53 8.47 9.53 25.53
2c 1 1 1 3 2.77 13.23 4.77 20.84 7.53 8.47 9.53 25.53
3 10 10 4 24 5.54 10.46 7.54 23.54 5.63 10.37 7.63 23.63

3.6.3 Effect of redundant link flows
A second concern, raised by Van Zuylen, is the effect of redundant link flows on the
estimated O-D demand. Table 3-3 presents O-D demands estimated by the trip based and
link-count based models, for a number of different scenarios. The results indicate that the
link-count model is sensitive to redundant link flow information. For the four-link network,
one of the four observed link flows is redundant, as it does not provide any additional
information. Since flow continuity exists at the node, flow into the node must equal flow out
of the node. Thus, if flows on three of the four links are known, the remaining flow can be
computed. The trip based model is not affected by the presence of redundant information.

Van Zuylen indicates that this characteristic feature of the link-count based model is
illogical, and undesirable. The link-count based model formulation assumes that all observed
flows provide additional information. Van Zuylen (1981) presents a modified form of this
formulation that he claims is insensitive to the introduction of redundant information.
However, this characteristic is not illustrated by way of an example. It appears that this
insensitivity is only achieved when the redundant flows are explicitly identified, and the
quantity Xa, from Equation [3-42], is set to unity for all redundant links.

Aside from the uncertainty about the validity of both the manner in which this
insensitivity is achieved, and the claim itself, a more fundamental question exists. In the
absence of link flow continuity, are any link flows redundant? If link flow continuity does
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not exist, then it is not possible to satisfy the continuity equation at each node, and it is also
not possible to determine the flow on the nth link, if the flows on links 1 through (n-1) are
known. In this sense, there cannot be redundant flows. Furthermore, flow discontinuity
generally results from the presence of natural temporal and spatial variations in link flows.
One link flow observation represents a sample from some unknown distribution of link
flows. It would be expected that as the number of observations increased, the accuracy in the
estimate of the true mean link flow would also increase.

It would appear, that for the estimation of O-D demands based on field data, the problem
of link flow redundancy is a non-issue. In practice, each observed link flow can be
considered to provide additional information, even though some links may only be providing
additional samples of a mean link flow.

In Chapters 4 and 5 the performance of the proposed LSE and LRE models will be
examined for scenarios in which redundant link flow information exists, and will be
compared with that of the trip based and link-count based maximum likelihood models
presented in this chapter.

Table 3-3: Maximum likelihood O-D estimates for a four-link network with
redundant link flows (Source: Van Zuylen, 1981)

O-D Trip Link-count based
Based Links having observed flows

all 1,2,3 1,2,4 1,3,4 2,3,4
A-C 12.5 12.5 12.60 12.39 11.64 13.36
A-D 12.5 12.5 12.40 12.61 13.36 11.64
B-C 10.5 10.5 10.40 10.61 11.36 9.64
B-D 17.5 17.5 17.60 17.39 16.64 18.36

3.7 Summary
In Chapter 2, a comprehensive review of the literature indicated that many approaches to the
estimation of network O-D demands, have been proposed. No one method has been shown to
be clearly superior to all others, however, the trip based and link-count based maximum
likelihood methods proposed by Van Zuylen and Willumsen, have made a significant impact
on the development of subsequent models. Furthermore, these models have been generally
seen as the benchmark against which static estimation methods are compared.

In this chapter, the formulation of both the vehicle-count based and trip-count based
models have been examined in detail. It has been shown that the link-count based model has
several desirable characteristics. First, the model is insensitive to the number of trips
represented by the seed demand. Second, when a feasible prior demand matrix exists, the
objective function is minimized when the estimated demand is equal to the prior matrix,
implying that any prior matrix, that satisfies the link flow constraints, is considered to be the
most likely demand matrix. Third, when the prior matrix is not a feasible solution, the
solution algorithm iteratively modifies the prior matrix, such that a feasible solution is found.
Lastly, the model is based on a sound formulation which can be described mathematically.
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The link-count based model is not, however, without weaknesses. Firstly, the model
formulation requires that node and path flow continuity exist in the observed link flows. In
practice this situation is rarely encountered. The implications, for the estimated solution, of
pre-processing link flow data to ensure continuity are not well defined or understood.
Second, the impact of the seed matrix is not yet well understood. The model formulation
places minimal belief in the prior matrix, and maximum belief in the observed link flows.
There is no opportunity to explicitly place a measure of reliability on the prior matrix, or on
some portion of it. Given the current testing and probable future implementation of route
guidance systems (RGS), direct sampling of O-D demands, via communication with RGS-
equipped vehicles, will be possible. These demands will represent but a sample of the
population demand patterns. The use of statistical procedures, as developed in Chapter 8 of
this thesis, permit the estimation of the reliability of these O-D demands. It is expected that
these demands would serve as prior knowledge to the O-D estimation procedure, which must
therefore, have the ability to consider explicitly the reliability of each prior O-D estimate.
Third, there is no opportunity to incorporate explicitly the reliability of observed link flows.
This is particularly desirable when link flow data are obtained from sources having different
levels of reliability associated with them.

The trip based model, being very similar to the link-count based model, shares many of
the same characteristics of the link-count based model, however, the trip based model
solution algorithm provides estimates that are not consistent with the model's mathematical
formulation. The solution algorithm is sensitive to the number of trips contained within the
prior matrix, but the mathematical formulation is not. A modified form of the trip based
model is claimed to be insensitive to the magnitude of the prior matrix, however, there is an
associated penalty in the rate at which the iterative solution algorithm converges.

Several significant strengths and weaknesses of the trip based and link-count based
maximum likelihood models have been identified. Based on these characteristics, two new
O-D estimation models are proposed. Chapter 4 presents the development of the
mathematical formulation and subsequent iterative solution algorithm for a link-count based
least squared error (LSE) model. Chapter 5 presents a similar development of a link-count
based model that minimizes the relative error (LRE). The performance of both of these
models is compared with the performance of the maximum likelihood models presented in
this chapter. In Chapter 6, the LRE and LSE models are extended to facilitate the estimation
of time varying demands.
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CHAPTER 4

DEVELOPMENT OF A LEAST SQUARES
O-D ESTIMATION MODEL

4.1 Introduction
The least squared error (LSE) model described in this chapter is based on the premise that
the estimated O-D demand should minimize the squared link flow differences. This
formulation does not require observed link flows to exhibit either node or path flow
continuity. An iterative solution algorithm, which is based on the Gauss-Seidel and Jacobi
solution techniques, is proposed to solve the model formulation.

The mathematical formulation can be derived from the basic assumption that the
estimated O-D demand matrix must minimize the squared link flow error. The algorithm
used to solve the mathematical formulation ensures that, when multiple solutions exist, and
no prior information is available, the solution chosen approximates the solution that is most
likely, according to the definition given in Chapter 3.

In this chapter, the LSE objective function is derived. Since the least-squared objective
function is convex and differentiable, it is possible to form the normal equations by
computing the partial derivatives of the objective function with respect to the unknown
demands. The O-D solution, or solutions, that satisfy this system of linear equations, then
also minimize the objective function. Subsequently, in Section 4.5, an iterative solution
technique is developed for solving the system of normal equations. This technique deals with
the issue of singularity, as well as non-negativity of the estimated demands.
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4.2 Development of the LSE Model

4.2.1 Mathematical basis
In many instances, a least biased estimator is considered to be the one that minimizes the
squared errors. This is the basis of least squares regression and is also chosen as the basis for
the objective function of the O-D demand estimation model described in this chapter.

The mathematical derivation begins with the definition of the link flow error function as
the sum of the squared difference between estimated and observed link flows (Equation [4-
1]).

The objective is to identify the set of solutions that minimize E. Since E is a convex
function, it is possible to create a system of normal equations by computing the partial
derivative of E with respect to each unknown O-D demand (Tij) in turn, and setting each
resulting equation equal to zero (Equation [4-2]).

Equation [4-3] expresses the estimated link flow Va, in terms of the as yet unknown
demands. Since each O-D can appear in Equation [4-3] no more than once, the partial
derivative of Va with respect to some unknown demand Tij, is simply the proportion of that
demand contributing to the flow on link a (Equation [4-4]).
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where: a = unique link identifier
Va = estimated flow on link a (vph)
V'a = observed flow on link a (vph)
Pij

a = probability that demand between i and j will use link a
Tij = demand between origin i and destination j (vph)

Substituting Equations [4-4] and [4-3] into Equation [4-2] results in Equation [4-5a]
which represents a system of N linear equations with N unknown O-D traffic demands. Note,
however, that not all of these N equations are necessarily independent. Thus, the existence of
a single solution that satisfies this system of equations is not guaranteed.

A closer inspection of Equation [4-5a] indicates that, when considering some link a
which is not part of any route between origin i and destination j ( Pij

a  = 0), there is no
contribution to the summation. Therefore, Equation [4-5a] can be simplified to form
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Equation [4-5b] in which the summation is only performed across those links which are on a
path between origin i and destination j.

The least squares model can be formulated as the set of unknown O-D demands that
satisfy the system of linear equations expressed in Equation [4-6]. This system of linear
constraints does not require that the estimated link flows exactly match those observed,
implying that neither node flow nor path flow continuity need exist. This permits the above
model to be applied directly to actual networks using raw field data, something which was
not possible with the formulations of Van Zuylen and Willumsen (1980) examined earlier
without some form of data pre-processing.
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where: a = unique link identifier
r = any link on a route between origin i and destination j
Va = estimated flow on link a (vph)
V'a = observed flow on link a (vph)
Pij

a = probability that demand between i and j will use link a
Tij = demand between origin i and destination j (vph)

4.2.2 Example with link flow continuity
It is useful to illustrate the effect of the system of normal equations expressed in Equation [4-
6] using the simple three-link example network presented in Figure 4-1. The application of
Equation [4-6] to this example provides two linear constraints as expressed in Equations [4-
7a] and [4-7b].

(TAB + TAC - V'1) + (TAB - V'2) = 0 [4-7a]
(TAB + TAC - V'1) + (TAC - V'3) = 0 [4-7b]
where: Tij = demand between origin i and destination j (vph)

V'a = observed flow on link a (vph)
Algebraically solving these two constraints results in the following expressions for TAB

and TAC :
TAB = TAC - V'3 + V'2, and

TAC = (2 ⋅ V'3 + V'1 - V'2) / 3
Since the above network provides a uniquely utilized link for each of the two unknown

O-D demands, it is a trivial task to determine the correct O-D matrix when node and path
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flow continuity exist. For example, if the observed link flows are V'1=50 vph, V'2=20 vph,
and V'3=30 vph, then intuitively it can be seen that the unknown demands must be TAB=20
vph and TAC=30 vph. Algebraically solving for TAB and TAC results in

TAC = (2 ⋅ 30 + 50 - 20) / 3 = 30 vph, and
TAB = 30 - 30 + 20 = 20 vph

indicating that for this simple example, the LSE model formulation correctly estimates the
unknown demand.

Figure 4-1: Example three-link network

4.2.3 Example with link flow discontinuity
A less trivial task is the determination of the most appropriate O-D matrix when path and
node flow continuity do not exist. Once again using the three-link network illustrated in
Figure 4-1, consider the observed link flows to be V'1=50 vph, V'2=35 vph, and V'3=30 vph.
Due to the lack of flow continuity, it is not immediately apparent what O-D matrix should be
chosen. Algebraically solving the linear constraints of Equations [4-7a] and [4-7b] results in
the following expressions for TAB and TAC :

TAC = (2 ⋅ 30 + 50 - 35) / 3 = 25 vph, and
TAB = 25 - 30 + 35 = 30 vph

The squared link flow error associated with the suggested solution is computed to be
75 vph2. To illustrate that the above suggested solution does indeed minimize the squared
link flow error, an enumeration of the link flow error of all potential O-D solutions located
near the suggested optimum can be carried out. The results of this enumeration, presented in
Table 4-1, indicate that the O-D demand proposed by the LSE formulation does minimize the
squared link flow error.
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Table 4-1: Squared link flow error for all potential O-D solutions in the vicinity of
the analytical solution (vph2)

Demand
between

Demand between zones A and B
(vph)

A and C (vph) 25 26 27 28 29 30 31 32 33 34 35
20 225 197 173 153 137 125 117 113 113 117 125
21 197 171 149 131 117 107 101 99 101 107 117
22 173 149 129 113 101 93 89 89 93 101 113
23 153 131 113 99 89 83 81 83 89 99 113
24 137 117 101 89 81 77 77 81 89 101 117
25 125 107 93 83 77 75 77 83 93 107 125
26 117 101 89 81 77 77 81 89 101 117 137
27 113 99 89 83 81 83 89 99 113 131 153
28 113 101 93 89 89 93 101 113 129 149 173
29 117 107 101 99 101 107 117 131 149 171 197
30 125 117 113 113 117 125 137 153 173 197 225
31 137 131 129 131 137 147 161 179 201 227 257

4.2.4 Example with multipath routes
The illustration of the appropriateness of the proposed LSE model formulation has been
limited thus far to an example in which all-or-nothing routes have been assumed. It is
instructive to demonstrate the appropriateness of the constraints for a simple example in
which multipath routes exist. Consider the network illustrated in Figure 4-2 in which there
exists two routes between origin zone A and destination zone C.

Application of Equation [4-6] to this example network provides the two linear constraints
expressed in Equations [4-8a] and [4-8b].
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where: V'a = observed flow on link a (vph)
Pij

a = probability that demand between i and j will use link a
Tij = demand between origin i and destination j (vph)

Algebraically solving Equations [4-8a] and [4-8b] results in the following expressions for
TAB and TAC :
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If the observed link flows are V'1=30 vph, V'2=20 vph, V'3=10 vph, and V'4=20 vph, and
it is assumed that 2/3 of the demand between zones A and C uses link 4, then TAB and TAC
can be estimated to be:
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Since the proposed system of constraints can be solved analytically, the solution space
contains only a single solution. As the above network provides a uniquely utilized link for
each of the two unknown O-D demands, and node and path flow continuity exist in the
observed link flow data, the single demand solution leading to the observed flows is clearly
TAB=20 vph and TAC=30 vph. Once again, it is therefore shown that the proposed system of
constraints leads to the selection of the correct O-D demand.

Figure 4-2: Example four-link network exhibiting multiple paths between an origin
and destination zone

4.3 Incorporation of Link Flow Reliability
In practice, link flow data often are obtained from a variety of sources including induction
loop detectors and video detectors operating as part of an FTMS or UTCS, manual traffic
counts, or historical data. Rarely do these different sources have identical levels of reliability
associated with them. Furthermore, varying levels of reliability often exist within the same
data source. For example, at any given time, a number of the detector stations within an
FTMS may be less accurate then the rest of the system due to a need for re-calibration, or due
to malfunctions. It is desirable to reflect explicitly these different levels of reliability within
the O-D estimation model.

4.3.1 Modified model formulation
From an engineering perspective, link flow errors associated with links for which observed
data have a low level of reliability, should contribute less to the overall link flow error
function, than errors associated with link data of a high degree of reliability. This goal is
accomplished in the following manner:

First, define Ra as the relative reliability associated with the observed link flow data for
link a. The relative reliability of any link flow may take on any positive value, however, we
find it convenient to generally restrict the range from zero to one (0 ≤ Ra ≤ 1.0). When Ra=0,
then the observed link flow is completely unreliable, and any flow error resulting for this link
should not be considered in the overall error function. Conversely, if Ra=1.0, then the
observed link flow data are no less reliable than any other data, and any discrepancies
between estimated and observed flows for this link should be considered in the error function
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at full value. The relative reliability of observed link flows is incorporated into Equation [4-
1] to create Equation [4-9]

( )[ ]2∑ ′−=
a

aaa RVVE [4-9]

where: a = unique link identifier
Va = estimated flow on link a (vph)
V'a = observed flow on link a (vph)
Ra = relative reliability of flow observed on link a

Following the same derivation as shown previously, the O-D demand, that minimizes E,
can be found by computing the first partial derivative of E with respect to Tij and setting it
equal to zero. Finding this derivative for each unknown demand results in a set of linear
equations defining the feasible region of solutions that minimizes the squared link flow error.
The resulting set of linear equations is similar to those presented in Equation [4-5], except
that the link flow reliability factor is now incorporated into Equation [4-10].
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where: r = any link on a route between origin i and destination j
Va = estimated flow on link a (vph)
V'a = observed flow on link a (vph)
Pij

a = probability that demand between i and j will use link a
Tij = demand between origin i and destination j (vph)
Ra = relative reliability of flow observed on link a

4.3.2 Example considering relative reliability of link flows
It is useful to examine, by way of example, how the relative reliability of link flows affects
the feasible region defined by the system of normal equations. Consider the simple three-link
linear network illustrated in Figure 4-3. Initially assume that all link flows are known with
equal certainty (R1=R2=R3=1.0). If the flows observed are V'1 = 50 vph, V'2 = 100 vph, and
V'3 = 50 vph, then the link flow error associated with a demand estimate of TAB = 50 vph, is
computed as

E = [(50-50)⋅1.0]2 + [(100-50)⋅1.0]2 + [(50-50)⋅1.0]2 = 2500 vph2

If, however, there is reason to believe that the flow obtained for link 2 is erroneous to
such a degree that it is totally unreliable, then the relative reliability of link 2 is zero
(R2=0.0). Now, for the same demand estimate (TAB = 50 vph), the associated link flow error
is computed as

E = [(50-50)⋅1.0]2 + [(100-50)⋅0.0]2 + [(50-50)⋅1.0]2 = 0 vph2

Clearly, for the extreme cases in which either all information is equally reliable, or some
information is totally unreliable and thus not considered, the use of relative link flow
reliability factors is consistent with engineering intuition. A scenario more likely to be
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encountered in practice is one in which all data are not equally reliable, but where no data
are totally unreliable. Consider, once again, the simple linear network example. Assume that
the flows obtained for link 2 are half as reliable as the other flow data (R2=0.5). Then, the
link flow error associated with TAB = 50 vph is

E = [(50-50)⋅1.0]2 + [(100-50)⋅0.5]2 + [(50-50)⋅1.0]2 = 625 vph2

Consider, Figure 4-4 which illustrates the variation of E in response to changes in the
relative reliability of flow data for link 2 only. It is assumed that the demand remains at 50
vph and that the relative reliability of links 1 and 3 remain constant at 1.0. It is evident from
Figure 4-4 that the reliability of observed flows can have a significant impact on the total link
flow error. It is also evident that the convexity and functionality of E are maintained despite
the introduction of the link flow reliability factors.

Since the objective is to estimate the demand that minimizes link flow error, it is of
interest to examine the impact that changes in the relative reliability of link flow data have
on the perceived optimum demand. Figure 4-5 illustrates the demand that minimizes link
flow error for the complete range of relative reliability of flow for link 2. As determined
earlier, when the observed flow for link 2 is regarded as being totally unreliable, the optimal
demand is 50 vph. As more and more confidence is placed in the flow observed on link 2, the
demand that minimizes the total link flow error also increases. This behaviour is consistent
with engineering intuition. Flow continuity exists only when the flow on link 2 is not
considered. Only under these conditions does an O-D demand exist that exactly replicates the
observed link flows (TAB=50 vph). As more confidence is placed in the flow of 100 vph
observed on link 2, the error function is minimized by increasing the estimated demand.

Figure 4-3: Example line three-link network used to illustrate the impact of link
flow reliability

A B1 2 3
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Figure 4-4: Variation in link flow error as a function of link flow reliability

Figure 4-5: Effect of link flow reliability on optimal O-D demand

From the previous examination of a simple linear network example, it is evident that the
relative reliability of link flow data can have a significant impact on the overall link flow
error function, and consequently, on the perceived optimum O-D demand estimate. Since, in
reality, most network demand estimation situations rely on data obtained from many sources
having different levels of reliability, the incorporation of link flow reliability is a useful
characteristic of a synthetic O-D estimation model.
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It is also clear that since the degree of reliability of link flows influences the estimated
demand, appropriate link flow reliability factors must be selected. Methods for determining
appropriate reliability factors are examined in the next section.

4.3.3 Determining appropriate link flow reliability factors
Bell (1984) has suggested that observed link flows can be considered as random variables.
Then, from a time series of link counts, the mean and variance of each link's flow can be
computed. Under steady-state conditions, variances in observed flow result from
randomness, and represent how much confidence can be placed in the validity of the mean
flow value. As illustrated in Figure 4-6, when the variance is large, less confidence can be
placed in the computed mean, as many of the individual observed flows are quite different
from the mean value.

Figure 4-6: Illustration of the impact of variance on the validity of the mean

Using this argument, Bell proposes that weighted least squares formulations use the
inverse of the variance as the link flow reliability factor. Thus, if the variance is small, the
error associated with that link will be weighted more heavily, and consequently, the
algorithm will attempt to replicate the observed flow more closely, implying that the
observed flow is quite reliable. Conversely, if the variance is large, then the weighting will
be small, and the algorithm will be less sensitive to the associated link flow error.

We illustrate this approach using data obtained from loop detectors located on Highway
401 in Toronto, Canada. The detectors report the number of vehicles detected crossing the
detection zone in any of the three lanes, during the previous 20 second period. These data
reflect freeway conditions from 4 AM to 9 AM on May 1, 1991. Figure 4-7 illustrates the
computed variance of observed vehicle counts by time of day. Each data point represents the
variance within the previous five minutes of 20 second observations. Figure 4-7 indicates
that the variance remains quite small until approximately 5:45 AM, at which time, the
variance begins to increase. This increase is not constant, but continues until approximately
7:15 AM, at which time the variance is almost 70 (veh/20 seconds)2. After 7:15 AM the
magnitude of the variance varies significantly. If we assume that the inverse of variance
provides a measure of the reliability of the link counts, then we must conclude that the link
counts observed prior to 6 AM are rather reliable, and most of those after 7 AM are very
unreliable.

The variance must, however, be considered in relation to the magnitude of the mean. If
the variance is large, but the mean is also large, then the relative accuracy of the mean may
still be quite high. A convenient measure of the variance of data with respect to the
magnitude of the mean is the coefficient of variation (COV). The COV is computed as the

Mean

Variance
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standard deviation divided by the mean. Figure 4-8, illustrating the COV of vehicle counts
computed from the same data as illustrated in Figure 4-7, indicates that the conclusions made
based on Figure 4-7 are incorrect. The most reliable link counts are those observed after 7
AM, when mean link flows are quite large in comparison to the variance.

However, the use of the inverse of the variance as a weighting factor does not directly
reflect the relative reliability of link flow. Rather, the weighting factor attempts to normalize
the contribution made by each link to the error function. As it is usually expected that link
flows with very large variances, also have very large link flow errors associated with them,
their contribution to the error function may be so large as to overwhelm the contributions
made by links having a smaller variance (and thus usually a smaller link flow error).
Utilizing the inverse of the variance as a weighting factor would tend to reduce the
contribution of links having a large variance.

Figure 4-7: Variance of vehicle counts observed on a three lane section of Highway
401 Eastbound Collectors at Avenue Road. Each point represents the
variance over the previous five minutes of 20 second link counts
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Figure 4-8: Coefficient of variation of vehicle counts observed on a three lane
section of Highway 401 Eastbound Collectors at Avenue Road. Each
point represents the COV computed over the previous five minutes of
20 second link counts

An alternative method of determining link flow reliability factors is based on the
conservation of flow. This method is particularly useful when estimating static demands from
a single observed flow for each link. Clearly, when only a single aggregate link flow is
available, the variance cannot be computed, and the use of the inverse of the variance as a
measure of reliability is not applicable. The method relies on the recognition that since flow
cannot be added (except at origin zones), and cannot be removed (except at destination
zones) from the network, flow discontinuity at a node must be due to measurement error, or
temporal fluctuations in flow. If detector stations are relatively close together (i.e. 1 km) and
the observation period is suitably long (i.e. 10 minutes) then in the absence of severe
congestion, the effects of temporal perturbations will generally not be large. The existence of
a large discontinuity in flow implies an erroneous observed link flow, and consequently, the
reliability of such a flow is rather low.

Two difficulties exist with the use of this method of determining link flow reliability
factors. First, the relationship between the magnitude of the flow discontinuity and the link
flow reliability is not known quantitatively. For example, if two connected links experience
flow of 100 vph and 200 vph respectively, then a flow discontinuity of 100 vph exists at the
intermediate node. Though it is evident that at least one of the observed link flows is in error,
it is not clear what the appropriate link flow reliability factor should be.
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The second difficulty lies with the identification of suspect observed link flows. It is
possible to identify nodes having flow discontinuity, but it is often not possible to determine
which link, or links, are actually responsible for this discontinuity.

Despite these difficulties, a heuristic approach for determining suspect link flows can be
defined. The magnitude of the flow discontinuity at each node (not zone) in the network is
determined in turn using Equation [4-11]. If the magnitude of the discontinuity exceeds a
user specified relative level, then each link connected to this node is tagged. Any link that is
tagged twice must be connected to two nodes exhibiting discontinuity in excess of the
threshold values and is considered to be suspect. Any link that is tagged only once, but is
connected at one end to either an origin or a destination zone, is also considered suspect. The
user may control whether suspect link flows are considered to be totally unreliable, or
assigned a link flow reliability factor based on the average relative flow discontinuity
(Equation [4-12]).

∑∑ ′′=
a

a
a

anode VVD [4-11]

where: V'a = observed flow on link a. Note that flow into the node is considered
positive, while flow out of the node is negative

( )2111 aana DDR +−= [4-12]

where: D1
a = discontinuity of upstream node of link a

D2
a = discontinuity of downstream node of link a

n = number of nodes that link a is connected to (n=1 or n=2)
Ra = relative reliability of flow on link a

To illustrate this heuristic approach, consider the three-link network illustrated in Figure
4-9. As indicated, the network consists of two intermediate nodes, an origin zone, and a
destination zone. Table 4-2 provides the associated calculations based on Equations [4-11]
and [4-12]. Table 4-2 indicates that the flow on link 1 is the least reliable, while the flow on
link 3 is the most reliable. These results are consistent with engineering intuition, indicating
that the heuristic approach provides a practical alternative to the use of the inverse of COV.

It must be noted, however, that when flows are not known for all links connected to a
node, it is no longer possible to calculate the flow discontinuity at the node using Equation
[4-11].

Figure 4-9: Example three-link network used to illustrate a heuristic method of
determining link flow reliability
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Table 4-2: Example application of a heuristic approach to determining link flow
reliability factors

Discontinuity at Nodes (Dnode)
Node Flow In Flow Out Dnode

1 N.A. 100 N.A.*
2 100 200 0.3333
3 200 210 0.0244
4 210 N.A. N.A.*

Link Flow Reliability Factors (Ra)
Link D1 D2 n Ra

1 N.A.* 33.33 1 0.6666
2 0.3333 0.0244 2 0.8211
3 0.0244 N.A.* 1 0.9756

* Since these nodes are zones, the discontinuity cannot be computed, and the link
reliability calculation utilizes the discontinuity from only a single node.

4.4 Characteristics of Formulation
It is prudent to examine the characteristics of the proposed mathematical formulation prior to
presenting the development of a solution algorithm. Since the formulation provides the basis
of the methodology, its characteristics, and in particular, the effects these characteristics have
on the estimated solution, should be fully understood.

Three particular characteristics of the least squares formulation need to be examined.
First, the constraints do not ensure that the feasible region contains only non-negative
demands. Second, it is not clear that an error function based on the squared flow differences
is the most appropriate measure of error. Third, in the event that multiple solutions exist, that
all result in the same error function value, how is a single solution chosen? Each of these
three issues is discussed and illustrated in the following sections.

4.4.1 Negative demand estimates
As with least squares regression, the constraints proposed in Equation [4-10] do not restrict
feasible demands to being non-negative. This lack of restriction can lead to negative demand
estimates as illustrated using the following simple example. Consider once again, the three-
link network illustrated previously in Figure 4-1.

The observed link flows, V'1 = 15 vph, V'2 = 10 vph, and V'3 = 50 vph, do not exhibit
node or path flow continuity. If all observed flows are considered to be equally reliable, then
the constraints expressed in Equation [4-2] lead to the following demand estimates:

TAC = (2 ⋅ V'3 + V'1 - V'2) / 3 = (2 ⋅ 50 + 15 - 10) / 3 = 35 vph
TAB = TAC - V'3 + V'2 = 35 - 50 + 10 = -5 vph

These demand estimates produce link flows of V1 = 30 vph, V2 = -5 vph, and V3 = 35 vph.
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The above solution minimizes the squared link flow error, however, the negative demand
is not valid and does not have any consistent physical interpretation. It is potentially possible
to truncate any non-positive demand estimates to zero. This technique has been used by other
researchers (Hendrickson and McNeil, 1984a), but the magnitude of its effect on the
optimality of the solution is not known a priori. Figure 4-10 illustrates, for this example
network, the impact that truncation has on the optimality of the estimated demand. The
unconstrained optimization results in a squared link flow error of 675 vph2, and is defined as
point A. Point B reflects the solution obtained when the unconstrained solution is truncated to
ensure that all demands are non-negative (E=725 vph2). It is evident from Figure 4-10 that
point B does not represent the optimal solution, even when TAB is constrained. Point C,
representing the constrained optimum solution, has an associated squared link flow error of
712.5 vph2. As will be demonstrated in Section 4.5.6, the modified Jacobi iterative solution
method proposed in Section 4.5.3 results in an O-D estimate for this same example network
corresponding to point C.

Figure 4-10: Impact of truncation on solution optimality

This example is presented to illustrate that the technique of truncation of the final model
estimate can lead to the acceptance of a solution which is sub-optimal. Of course, this
example cannot serve to make general conclusions regarding the magnitude of the sub-
optimality, as this is likely a function of the network configuration and the observed link
flows.

It is possible to add explicit non-negativity constraints to the LSE model formulation
expressed in Equation [4-6] to produce Equation [4-13], however, it is significantly more
difficult to carry out a closed-form algebraic solution for this modified formulation. It will be
shown by way of an example, that the modified Jacobi iterative solution method proposed in
Section 4.5.3 does indeed solve the constrained formulation provided in Equation [4-13].
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where: a = unique link identifier
r = any link on a route between origin i and destination j
Va = estimated flow on link a (vph)
V'a = observed flow on link a (vph)
Pij

a = probability that demand between i and j will use link a
Tij = demand between origin i and destination j (vph)

4.4.2 Suitability of error function
The suitability of defining an error function based on the squared link flow differences is
partially a philosophical debate and partially a mathematical convenience. The error function
actually consists of two elements  the link flow difference, and the second order exponent.
The latter element is most easily justified. Since there is no reason to believe that errors
resulting from underestimated flows are more or less important than those resulting from
over-estimated flows, the contribution to the error function should be the same for the same
absolute error. The most convenient manner in which to achieve this equality is to square the
error, negating the sign (i.e. negative or positive) of the error. Squaring the error also has the
effect of weighting the large errors proportionately more heavily than smaller errors.

The philosophical preference arises from the choice of link flow differences as a measure
of error. Adopting this measure of error implies that under (or over) estimating a link flow of
10 vph by 10 vph is as important as under (or over) estimating a link flow of 1000 vph by
10 vph. The link flow difference in each case is simply 10 vph. No measure of the relative
error is captured. It may be argued, that it is more important to reduce the errors that
constitute a large proportion of the observed flow, than it is to reduce the small proportional
errors.

No answer to this philosophical debate is proposed at this point in the thesis. However,
the development of an O-D estimation technique based on minimizing the proportional link
flow errors is described in the next chapter. Subsequent chapters describe the application of
both models to a number of hypothetical and actual networks. Comparisons between the two
models are made and conclusions regarding the most appropriate error function are drawn.

4.4.3 Selecting a solution when multiple solutions exist
The LSE model, which has been presented, is based on the minimization of the squared link
flow differences. In theory, it is possible that more than one solution, that minimizes this
error, exists. The question that must be answered, is, how does the model select one of these
feasible solutions?

To illustrate the problem, consider the simple two-link network presented in Figure 4-11
for which the observed flows on links 1 and 2 are V'1=16 vph and V'2=18 vph. Three O-D
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demands are feasible – TAB, TAC, and TBC. As indicated in Figure 4-12, it is possible, in this
simple example, to graphically illustrate the feasible solution space defined by the following
three normal equations:

TAB + TAC - 16 = 0
(TAB + TAC - 16) + (TBC + TAC - 18) = 0
TBC + TAC - 18 = 0

The feasible solution space is defined by the line describing the intersection of two
planes. The model formulation does not provide any means for selecting one solution from
the many feasible solutions that lie on this line. There are two issues that must be addressed.
First, the model must be consistent so that under the same circumstances, it always selects
the same solution as optimal. Second, when multiple solutions exist, it is advantageous for
the model to select a solution which, by some measure, is more likely than the other feasible
solutions.

It will be shown that the solution algorithm used to solve the LSE formulation does
provide a means of selecting one solution when multiple solutions exist. Furthermore, it will
be shown by way of example, that in the absence of prior information, the selected solution
approximates the most likely solution.

Figure 4-11: Example two-link network

Figure 4-12: Illustration of the feasible O-D solution space for a two-link example
network
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4.5 Development of a Solution Algorithm
The least squares model that has been developed and illustrated in the preceding sections
may be thought of as a linear regression of multiple independent variables. Regression is a
well established analysis technique on which much has been written (two particularly useful
references are Draper and Smith, 1980 and Box et al., 1978). We draw on this literature to
briefly provide the formal solution to find a multiple linear regression model that minimizes
the least squared errors.

4.5.1 Formal solution
Consider an O-D estimation problem in which there exists L observed link flows, and N
unknown O-D demands. Then, the set of equations of the form

( )∑=′
a

ij
a

ija TPV [4-14a]

where: V'a = observed flow on link a (vph)
Pija = probability that demand between i and j will use link a
Tij = demand between origin i and destination j (vph)

may be written in matrix form as
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or,
V = P T [4-14c]
where: V = the column vector of observed link flows

P = the matrix of link use probabilities
T = the column vector of unknown O-D demands

Note, that in order to present both P and T as two-dimensional matrices, Ti refers, in this
section only, to the unknown demand between the ith origin - destination pair.

Values for T, that minimize the squared link flow error, may be found by solving the
system of equations presented in Equation [4-6]. These equations, algebraically referred to as
the normal equations, are expressed in matrix notation as

Pt ( V - PT) = 0 [4-15]
where: Pt = the transpose of the matrix P

The transpose of a matrix A, having m rows and n columns, is a matrix At having n rows
and m columns. The ith column in matrix A is transposed to become the ith row in matrix At.
Equation [4-15] can be expanded to produce Equation [4-16].

Pt V - PtPT = 0 [4-16]
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It is desirable to express Equation [4-16] in terms of the unknown column demand matrix
T. To achieve this goal, it is necessary to make use of the properties of the inverse of a
matrix. If the inverse of some matrix A is denoted B, then, as indicated in Equation [4-17],
the matrix multiplication of A and B in any order, results in the unit matrix I.

AB = BA = I [4-17]
If the term [PtP] from Equation [4-16] has an inverse, then the vector of unknown

demands can be determined from Equation [4-18].
[PtP]-1 PtV - [PtP]-1 PtPT = 0 [4-18a]
[PtP]-1 PtV - I T = 0 [4-18b]
T = [PtP]-1 PtV [4-18c]
where: V = the column vector of observed link flows

P = the matrix of link use probabilities
Pt = the transpose of the matrix of link use probabilities
T = the column vector of unknown O-D demands

4.5.2 Limitations of the formal solution
The formal solution expressed in Equation [4-18] is only valid when [PtP] has an inverse. In
order for [PtP] to have an inverse, two conditions must be met. First, [PtP] must be square,
and second, the determinant must be non-zero. If the determinant of a square matrix is zero,
then the matrix is considered to be singular and cannot be inverted.

The first condition is always met, for if P is of dimensions L × N, then Pt must have
dimensions N × L. Then, the dimensions of PtP are L × L, which is a square matrix.

The second condition can be shown to not always be satisfied for a general case. To
illustrate this, consider the two-link network presented in Figure 4-11 for which three O-D
demands are possible (TAB, TAC, and TBC) and the observed flows are V'1=16 vph and V'1=18
vph. For this network, P, Pt, T, and V can be defined as follows:
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The matrix multiplication of [PtP] is computed as follows:
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The determinant of [PtP] is computed as a11A11 - a12A12 + a13A13 * where A13, A13, and
A13 are computed as follows:
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Then, the determinant of [PtP] is equal to (1⋅1) - (1⋅1) + (0⋅1) = 0. Since the determinant
is equal to zero, the matrix [PtP] is singular and cannot be inverted. This singularity occurs
because the O-D estimation problem is underspecified as there are three unknown demands
and only two constraint equations. There exist multiple solutions and the formal solution to
the least squares model cannot be solved.

4.5.3 Iterative solution algorithm
The formal solution approach discussed in the previous section is only valid when the
problem is not underspecified. However, we wish to be able to solve the problem regardless
of the number of feasible solutions that exist. Existing iterative methods for solving systems
of linear equations include the Gauss-Seidel method (Hornbeck, 1975) and the Jacobi
method (Williams, 1984). Though these methods themselves will be shown to be unsuitable
for the purposes of this work, they do form the basis of the proposed iterative solution
method and as such will be briefly examined below.

a. Gauss-Seidel Method:
The Gauss-Seidel iterative process consists of repeatedly cycling through the system of

linear equations. During each cycle, the current equation is solved for one of the unknowns
using previously determined values for each of the other unknowns. Consider as an example,
a set of three linear equations:

3333232131

2323222121

1311211111

rxcxcxc
rxcxcxc

rxcxcxc

=++
=++
=++

[4-19]

The first equation is now solved for x1, the second for x2, and the third for x3 to provide
Equation [4-20].

                                                  
* Williams (1984) provides a comprehensive discussion of the calculation of determinants
and their properties.
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( )
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[4-20]

An arbitrary initial guess is made for each unknown and designated by 0
3

0
2

0
1 ,, xxx . Then,

the first equation in Equation [4-20] can be used to estimate a new value for x1.

( ) 11
0
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0
2121

1
1 cxcxcrx −−= [4-21a]

A new estimate for x2 is determined using the most recently computed value of x1 and the
value of x3 is computed using the most recently computed value of x1 and x2.
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According to Hornbeck (1975) convergence of the Gauss-Seidel iterative method cannot
be guaranteed unless the absolute value of the diagonal is greater than the sum of the
absolute value of the remaining elements on that row (Equation [4-22]).
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b. Jacobi Method:
The Jacobi method of iteratively solving a system of linear equations is similar to the

Gauss-Seidel method with the exception that new estimates of unknowns are made only on
the basis of the values computed during the previous iteration. Computations are not made
using the most recently computed values as was done in the Gauss-Seidel method.
Examining the set of three linear equations presented in Equation [4-19], the Jacobi method
computes x1, x2, and x3 from the following equations:

( ) 11
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1
1 cxcxcrx −−= [4-23a]
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0
1313

1
3 cxcxcrx −−= [4-23c]

It can be noted that in Equation [4-23b] and [4-23c] all computations are made using
values determined in the previous iteration, in this case iteration zero. In the Gauss-Seidel
method, these values were the most recent values available.

The convergence criterion for the Jacobi method is the same as that for the Gauss-Seidel
method. Williams (1984) indicates that, in general, the Gauss-Seidel method converges more
quickly than the Jacobi method, however, this is not guaranteed.

c. Evaluation of the Gauss-Seidel and Jacobi Methods:
It would appear that both the Gauss-Seidel method and the Jacobi method would be

potentially suitable for solving the system of linear equations resulting from the use of the
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LSE model for the estimation of O-D demands. However, it is not clear that the convergence
criterion of these iterative methods, expressed in Equation [4-22], is likely to be met. To
examine this, consider the now familiar two-link example network presented in Figure [4-
11]. Consider the observed link flows to be equal to V'1=16 vph and V'2=18 vph. The system
of linear constraints resulting from the LSE model is provided in Equation [4-24].

18110
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=++
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BCACAB

BCACAB

BCACAB

TTT
TTT
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[4-24]

Table 4-3 provides the results obtained from the first 5 iterations of the Gauss-Seidel and
Jacobi iterative methods. It can be seen that the Gauss-Seidel method quickly converges to a
solution while the Jacobi method does not converge at all. An examination of the system of
linear equations in Equation [4-24] indicates that the convergence criterion of Equation [4-
22] is not met and explains why the Jacobi method fails to converge. Despite the
convergence criterion not being met in this example, the Gauss-Seidel method converges.
Hornbeck (1975) indicates that in practice, convergence can be obtained with the Gauss-
Seidel method with much weaker diagonal dominance than is specified in Equation [4-22],
however, under these conditions convergence cannot be guaranteed.

Table 4-3: Gauss-Seidel and Jacobi iterative method results from a simple network
having multiple solutions that satisfy the system of linear equations

Iteration Gauss-Seidel Method Jacobi Method
Number TAB TAC TBC E TAB TAC TBC E

(vph) (vph) (vph) (vph2) (vph) (vph) (vph) (vph2)
0 5.0 5.0 5.0 100.0 5.00 5.00 5.00 100.0
1 11.0 9.0 9.0 16.0 5.00 5.00 10.00 98.0
2 7.0 9.0 9.0 0.0 11.00 12 20.00 98.0
3 7.0 9.0 9.0 0.0 4.00 5 16.00 98.0
4 7.0 9.0 9.0 0.0 11.00 12 16.00 98.0
5 7.0 9.0 9.0 0.0 4.00 5 16.00 98.0

Since the Gauss-Seidel method utilizes the most recent O-D estimates in each
computation, it is possible that the estimated solution is sensitive to the order in which the
system of equations is examined. Consider the same two-link example but in this case,
assume that the order in which the O-D traffic demands appear in each equation is altered.

16110
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[4-24]

Applying the Gauss-Seidel method to this system of linear equations results in an
estimated O-D solution of TAB = 8 vph, TAC = 8 vph, TBC = 10 vph. This solution satisfies the
system of linear equations, but it is not the same solution as the one found earlier using the
Gauss-Seidel method. Thus, in this example, the O-D solution estimated by the Gauss-Seidel
method is sensitive to the order in which the system of equations is written. This sensitivity is
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undesirable, as the estimated O-D demand is potentially dependent on the arbitrary order in
which the equations are written.

In this section it has been shown that both the Gauss-Seidel method and the Jacobi
method may not converge to a solution if diagonal dominance does not exist. It has also been
shown, by way of a simple example, that diagonal dominance is not guaranteed to exist for
all O-D estimation problems. Furthermore, it was shown that the O-D solution estimated by
the Gauss-Seidel method, for this particular example network, was sensitive to the order in
which the system of linear equations was written. As a result, the next section proposes an
iterative solution method that is a modification of the standard Jacobi method.

d. Proposed Method:
The problem with the standard Jacobi method is that it is only guaranteed to converge

when the diagonal dominance expressed by Equation [4-22] exists. Since O-D estimation
problems exist in which this diagonal dominance criterion is not met, it is desirable to
modify the standard Jacobi method to enable it to converge even when diagonal dominance
does not exist.

The standard Jacobi method is modified, using a relaxation technique (Hornbeck, 1975),
so that after an iteration is completed (i.e. values have been computed for all unknowns),
these computed values are modified by some factor (1-α) prior to using them in the next
iteration. It should be noted that when α=1.0, then the modified Jacobi method reverts back
to the standard Jacobi method.

( ) l
i

l
i

l
i xxx αα −+= ++ 111*

[4-25]

where: xi
l+1*

= the modified value for unknown xj that is estimated in iteration l+1
xi

l+1 = the standard Jacobi estimate of xj in iteration l+1
xi

l = estimate of unknown xj in iteration l
α = relaxation factor

Consider the set of three general linear equations presented in Equation [4-19]. From,
Equation [4-25], the modified estimate for x1 for the first iteration is expressed as Equation
[4-26a]. From Equation [4-23a], the expression for x1

1 can be substituted into Equation
[4-26a]. Algebraically simplifying Equation [4-26a] results in Equation [4-26c], an
expression for x1

1*

that is a function of the value of x1 determined in the previous iteration (x1
0)

and the value of the constraint equation from which x is being evaluated (Ci). Similar
expressions can be derived for the other unknowns x2, and x3.
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For the more general O-D estimation case, Equation [4-27] provides the modified
estimated of demand Tij for the current iteration.

( )ijn
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ij CTT
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α−=+1 [4-27]

where: nij = ( )∑
r

r
r

ij RP 22

Cij = ( )( )∑ ′−
r

r
r

ijrr RPVV 2

V'r = observed flow on link r (vph)
Vr = estimated flow on link r (vph)
Pijr = probability that demand between i and j will use link r
Rr = relative reliability of flow observed on link r
α = relaxation factor (0 < α < 1.0)
l = iteration number

The format of the proposed iterative method, as expressed in Equation [4-27], is
consistent with engineering intuition. First, when Cij is equal to zero for each O-D pair, then
the set of linear constraint equations is satisfied and the current estimate of Tij must be
optimal. However, if Cij is not equal to zero, then the current demand estimate does not
satisfy the constraint equations, implying that Tij is not yet optimal and some change to Tij
will result in a reduction of the total squared link flow error.

Iterative changes are made to the current demand estimate by computing the average
flow errors across all links that each demand traverses, and subtracting this average error
from the current demand estimate. Since the average flow error across all links is computed,
iterative changes to all contributing demands are allocated in a least biased manner. This
approach leads to a solution that approximates the most likely solution when multiple
solutions exist and prior information is not available. The relaxation factor α, is used to
achieve convergence of the algorithm, even when diagonal dominance does not exist. The
complete iterative algorithm is presented in Table 4-4 and is applied to a simple example
network in Section 4.5.5.

The proposed modified Jacobi iterative solution method provides several advantages over
the Gauss-Seidel method and the standard Jacobi method:
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1. The convergence criterion for the modified Jacobi method is less restrictive than that
of the standard Jacobi method. It will be demonstrated in Section 4.5.5, that the modified
Jacobi method converges to a solution for the simple example two-link network examined
earlier, for which the standard Jacobi method did not converge.

2. The modified Jacobi method is insensitive to the order in which the system of
equations is arranged. It was shown in this section that, for the examined example, the
Gauss-Seidel method exhibited sensitivity to the order of the equations.

Table 4-4: Iterative solution algorithm for estimating O-D demands that minimize
the squared link flow errors

Step Description Equation
Initially, the iteration counter is set to zero l = 0

1 Use the prior matrix as the initial estimate of the
unknown demand matrix for iteration zero

Tij = tij ∀ij

2 Assign the current estimate of demand to the
network using known link use probabilities ( ) a

ij

a
ijija PTV ∀⋅=∑

3 Compute the sum of the difference between estimated
and observed link flows for all links associated with
each O-D pair in turn

( )( )∑ ′−=
r

r
r

ijrrij RPVVC 2

4 Increment the iteration counter l = l +1
5* Based on the estimated and observed link flows,

compute new estimates of all O-Ds ( )ijn
l

ij
l

ij CTT
ij

α−=+1

nij = ( )∑
r

r
r

ij RP 22

6 Incorporate non-negativity constraints 00 11 =< ++ l
ij

l
ij TthenTif

7 If stopping criterion not yet met, go to Step 2 See section 4.5.4

4.5.4 Algorithm stopping criteria
Since the algorithm proposed in Section 4.5.3 is iterative in nature, criteria must be defined
that can be used to determine when sufficient iterations have been carried out to warrant
termination of the procedure. An obvious criterion to use is the link flow error function, E.
The algorithm has been formulated to ensure that E never increases if more iterations are
carried out. Unfortunately, since E is the squared difference between the estimated and
observed flows, its magnitude has little physical meaning. Using Equation [4-28], it is
possible to determine the average absolute link flow error based on E. The true average
absolute link flow error is computed from Equation [4-29].

NEE = [4-28]

∑ ′−=
a

aaN
abs VVE 1 [4-29]

                                                  
* If seed O-D demand reliability factors are to be considered, then Equation [4-34] from
Section 4.6 must be used instead of the equation presented here.
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where: N = number of links over which the error has been computed
V'a = observed flow on link a (vph)
Va = estimated flow on link a (vph)

Another stopping criterion, the average link flow error measured as a proportion of the
observed flow, can be computed using Equation [4-30]. The true average relative link flow
error is determined from Equation [4-31].
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where: N = number of links over which error has been computed
V ′ = average observed link flow
V’a = observed flow on link a (vph)
Va = estimated flow on link a (vph)

It is also advantageous to develop a stopping criterion that is based on the marginal
decrease in link flow error. If each subsequent iteration of the algorithm provides a large
reduction in the link flow error, then carrying out further iterations is likely to be beneficial.
If the marginal reduction in link flow error is very small, then regardless of the absolute or
relative measures of error, further iterations are not likely to result in significant reductions in
error. An appropriate measure of the marginal reduction in link flow error is obtained by
computing the difference between the average relative link flow error of the previous
iteration, with that of the current iteration.

( ) ( )ininn EEE −=∆ −1
[4-32]

where: i = the current iteration number
For practical purposes, it is most useful to use Equation [4-32] as a stopping criterion for

the iterative algorithm as the marginal improvement provided by each iteration provides a
true measure of the benefit of carrying out a successive iteration. This benefit can be weighed
against the cost of carrying out another iteration, and the user can then determine whether the
resulting benefit – cost ratio is sufficiently high to warrant further iterations. The cost of
carrying out each iteration would typically be measured by the amount of computing time
required to carry out the iteration. For the simple example network used to illustrate features
of the algorithms and their formulations, computing time is very short. However, as will be
demonstrated in Chapter 7, estimating time-varying demands on large networks may require
significant computing time to carry out each iteration.

4.5.5 Application of iterative algorithm to a simple network
having multiple solutions

The iterative solution technique is illustrated using the now familiar two-link example
network presented earlier in Figure 4-11. Three O-D demands are feasible (TAB, TAC, and
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TBC) and observed flows are assumed to be V'1=16 vph and V'1=18 vph. The relaxation factor 
α is initially assumed to be equal to 0.5.

The system of linear equations that are to be solved are those from Equation [4-24].
Based on Equation [4-27], the following expressions for each unknown O-D demand can be
determined. These expressions can be used to generate estimates of the O-D demands in each
iteration as provided in Table 4-5.
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Table 4-5: Iterative algorithm results for a simple example network
Iteration TAB TAC TBC Flow on Link (vph) Error
Number (vph) (vph) (vph) 1 2 (vph2)

0 5.00 5.00 5.00 10.00 10.00 100.000
1 8.00 8.5 9.00 16.50 17.50 0.500
2 7.75 8.5 9.25 16.25 17.75 0.125
3 7.63 8.5 9.38 16.13 17.88 0.031
4 7.56 8.5 9.44 16.06 17.94 0.008
5 7.53 8.5 9.47 16.03 17.97 0.002
6 7.52 8.5 9.48 16.02 17.98 0.000
7 7.51 8.5 9.49 16.01 17.99 0.000
8 7.50 8.5 9.50 16.00 18.00 0.000
9 7.50 8.5 9.50 16.00 18.00 0.000

10 7.50 8.5 9.50 16.00 18.00 0.000

After eight iterations, the algorithm has converged to a solution. Comparing this solution
to the one computed by the link-count based maximum likelihood model in Chapter 3
(TAB = 7.53 vph, TAC = 8.47 vph, TBC = 9.53 vph), indicates that the two solutions are
approximately equal.

Unlike the trip-based maximum likelihood model examined in Chapter 3, the LSE model
is insensitive to the magnitude of the seed, so that the same demand is estimated for all
uniform seeds. For a non-uniform seed of TAB = 10 vph, TAC = 10 vph, and TBC = 4 vph, the
LSE model estimates an O-D demand of TAB = 6.0 vph, TAC = 10.0 vph, and TBC = 8.0 vph.
Again, this solution is similar to the maximum likelihood estimates provided by the trip-
based entropy model and the link-count based information model in Chapter 3.

It is also instructive to examine the impact that the relaxation factor α has on the final
solution. Figure 4-13 illustrates the variation in total link flow error as a function of iteration
number for three different levels of α.

Figure 4-13 indicates that, for this simple example, the algorithm converges very quickly
when α is equal to 0.5, and somewhat less quickly when α is equal to either 0.1 or 0.95. The
relaxation factor acts to prevent the entire correction factor from being utilized when
computing the new O-D demand. When α is very small, a small portion of the computed
correction factor is used to modify the current O-D estimate. Since only small corrections are
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made during each iteration, it would also be expected that the algorithm would converge
more slowly. This intuitive expectation is supported by Figure 4-13.

Unfortunately, using this same line of reasoning, it would be expected that as α
approaches 1.0, the algorithm would converge more and more rapidly. This expectation is
not supported by Figure 4-13. In fact, when α=0.95 the algorithm converges more slowly
than when α=0.5 or α=0.1. To provide insight into the cause for these results, we examine
the demand, TAC, estimated during each iteration (Figure 4-14).

Figure 4-13: Effect of the relaxation factor and the number of iterations on the
squared link flow error (Seed matrix = (5,5,5))
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Figure 4-14: Effect of the relaxation factor and the number of iterations on a selected
O-D demand - TAC (Seed matrix = (5,5,5))

Figure 4-14 indicates that the algorithm over-estimates the necessary correction when α
=0.95. Since the algorithm continually over-estimates the necessary correction, it also
converges more slowly. However, when α is equal to either 0.1 or 0.5, a small enough
portion of the computed correction is used, so that the algorithm never over-estimates the
necessary correction.

This example has indicated that the iterative solution method converges most rapidly
when α=0.5. However, this finding is not likely to be true in general as the effect of α on the
rate of convergence is likely network dependent. Fortunately, it is a simple matter to calibrate 
α for each network by carrying out a simple sensitivity analysis and then utilizing the most
appropriate value. As the value of α approaches 1.0, there is a danger that if the system of
constraints is not diagonally dominant, the algorithm will not converge. This problem is
avoided by selecting a smaller value for α such that the algorithm applies only a portion of
the computed correction factors.

The automatic determination of an optimal value for α is outside of the scope of this
thesis, however, it is hypothesized that a methodology could be created that selects the value
of α on the basis of the number of sign reversals observed in the alterations made to each O-
D demand. For example, in Figure 4-14, the oscillations that occur when α=0.95 indicate that
the convergence could be accelerated by reducing the magnitude of the relaxation factor.
This hypothesis is not tested in this thesis.

The LSE model is insensitive to the number of trips contained within the seed matrix.
The results that have been presented here are based on a uniform seed matrix having a
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magnitude of 5 vph for each O-D demand. The same final O-D estimate would have been
obtained for this network regardless of the magnitude of the seed matrix, providing that the
matrix was uniform and the relaxation factor was sufficiently small to ensure convergence. In
general, when the magnitude of the seed matrix becomes less similar to the magnitude of a
feasible solution, more iterations are required to achieve the same level of link flow error.

4.5.6 Application of iterative algorithm to a second simple
network

It is instructive to re-examine the example of Section 4.4.1. This example served to illustrate
how the unconstrained LSE model formulation can lead, under certain circumstances, to
negative demand estimates. It was further illustrated that the simple truncation of any final
O-D estimates that are negative may lead to a solution that is not optimal. In this section, the
modified Jacobi iterative solution technique, that was provided in Table 4-4, is used to solve
for the optimal O-D demands for the example of Section 4.4.1.

Consider the three-link network that was originally presented in Figure 4-1. The observed
link flows, V'1 = 15 vph, V'2 = 10 vph, and V'3 = 50 vph, do not exhibit node or path flow
continuity. All observed flows are considered to be equally reliable.

As indicated in Figure 4-15, the algorithm's final demand estimate is TAB = 0 vph and
TAC = 32.5 vph with an associated squared link flow error of 712.5 vph2. It can be seen that
the estimated solution is closer to the unconstrained optimum (TAB = -5 vph and TAC = 35
vph; E = 675 vph2) than the solution obtained when the unconstrained solution estimate is
truncated (TAB = 0 vph and TAC = 35 vph; E = 725 vph2). The algorithm provides the optimal
solution under the constraint that TAB > 0 vph and TAC > 0 vph. Since link flow continuity
does not exist, there does not exist a solution that results in a link flow error of zero.
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Figure 4-15: Demand estimates and associated squared link flow error as a function
of the iteration for a situation in which the unconstrained optimum
results in a negative O-D estimate

4.5.7 Application of iterative algorithm to a network with non-
uniform link reliability factors

It is instructive to examine the performance of the algorithm when non-uniform link flow
reliability factors are considered. This examination is accomplished by applying the LSE
model to the three-link example network examined in the previous section. The observed
link flows are again assumed to be V'1 = 15 vph, V'2 = 10 vph, and V'3 = 50 vph. It is initially
assumed that the flow observed on link three is suspect, and as such has an associated
reliability factor of 0.5, while the other two links are considered totally reliable.

Figure 4-16 illustrates the estimated demands, and associated squared link flow error, for
the first 15 iterations of the LSE model algorithm. As is evident, the model converges to a
solution which provides a minimum squared link flow error. Since link flow continuity does
not exist, no O-D solution can exactly replicate the observed link flows, and thus the squared
link flow error never reaches zero. After 30 iterations of the algorithm, the O-D estimates of
TAB = 2.5 vph and TAC = 20 vph are different from those estimated in the previous example
(TAB=0 vph and TAC=32.5 vph). The associated squared link flow error is also quite different
(E = 337.7 vph2; previous example E = 712.5 vph2), as the objective function is also a
function of the squared link flow reliability factor.

Figure 4-16 provides results from the algorithm for the specific case when R3=0.5. It is
instructive to examine the final O-D estimates as a function of the link flow reliability of link
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three. Figure 4-17 provides the final estimates of the O-D demands, as well as the associated
squared link flow error, over the complete range of flow reliability for link three. It can be
seen that the squared link flow error increases as the magnitude of the link flow reliability
factor increases. This occurs due to the presence of the link flow reliability factor within the
objective function. It can also be seen that for a link flow reliability factor of 1.0, the O-D
estimates and the associated squared link flow error, are equal to those determined in the
previous section and illustrated in Figure 4-15.

Figure 4-16: Demand estimates and associated squared link flow error as a function
of the iteration for a situation in which non-uniform link flow reliability
factors exist
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Figure 4-17: Demand estimates and associated squared link flow error as a function
of the link flow reliability

4.6 Incorporation of Seed O-D Demand Reliability

4.6.1 Introduction
In practice, some prior O-D demand information is often available when a new O-D matrix
needs to be estimated. These data may be somewhat outdated, or be available for only a
portion of the network, but these data usually contain some information which may be
relevant to the current demand pattern. As such, they could potentially be used to produce
more accurate demand estimates when multiple solutions can minimize the objective
function.

Until this point, it has been assumed that all the cells in the prior demand matrix are
known with an equal degree of certainty. In the case when no prior information exits, all cells
are set to have magnitudes which are equal to each other, implying that O-D demands are
equally likely. However, the situation in which some portion of the seed matrix is known
with certainty, and less is known about the remaining demands, is more difficult to reflect
with the current LSE model formulation, as it does not provide a means of explicitly
indicating the relative reliability of the prior information.

Before discussing how a seed O-D demand reliability can be incorporated into the LSE
model, it is useful to first define what exactly a seed demand reliability factor should
accomplish.
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The seed O-D reliability factor (Rij) is similar to the link flow reliability factor (Ra)
except its subscripts refer to an origin - destination pair, rather than a link. As with the link
flow reliability factor, the seed O-D reliability factor is given the range of 0 ≤ Rij ≤ 1.0.

When Rij = 0, then the seed O-D demand tij represents an initial demand estimate which
is to have virtually no bearing on the final solution. In contrast, when Rij = 1.0, then the seed
demand, tij is considered to be known with the highest level of certainty, and as such, should
not be altered to reduce any associated link flow error. When 0 < Rij < 1.0, the reliability
factor represents an intermediate relative reliability of the associated seed demands.

4.6.2 Modification to the solution algorithm
The seed reliability factor is at present incorporated exclusively into the iterative solution
algorithm of the LSE model, rather than its formulation. In fact, even without the reliability
factor, the seed matrix does not even appear in the model formulation.

The solution algorithm successively modifies an initial seed matrix. In the absence of any
seed reliability factors, all O-D demands are modified, with the magnitude of the
modification being proportional to the relative magnitude of the seed demand. However, with
seed reliability factors, it is desired to modify the algorithm so that the seed demand is
successively modified at rates which are in proportion to the relative magnitude of the seed
demand and the associated seed reliability factor. Thus, an O-D cell of high reliability, which
may require a large modification, will actually only undergo a small change.

To incorporate this into the algorithm, the equation in Step 5 of Table 4-4 is replaced
with Equation [4-34].

( )( )ijijn
l

ij
l

ij RCTT
ij

−−=+ 11 α [4-34]

where: nij = ( )∑
r

r
r

ij RP 22

Cij = ( )( )∑ ′−
r

r
r

ijrr RPVV 2

V'r = observed flow on link r (vph)
Vr = estimated flow on link r (vph)
Pijr = probability that demand between i and j will use link r
Rr = relative reliability of flow observed on link r
Rij = relative reliability of demand between i and j
α = relaxation factor (0 < α < 1.0)
l = iteration number

4.6.3 Example application considering the relative reliability of
seed O-D demands

To illustrate the impact of relative seed reliability, consider the four-link network in Figure
4-18 having four possible O-D demands (TAC, TAD, TBC, TBD ), and assume the observed
flows are V'1 = 100 vph, V'2 = 100 vph, V'3 = 80 vph, and V'4 = 120 vph.
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Using this example network, five different scenarios will be examined. For each
scenario, the LSE model will be used to estimate an O-D solution. Table 4-6 provides a
summary of the scenario configurations and the resulting estimated demands.

Figure 4-18: Example four-link network used to illustrate the impact of the relative
reliability of seed O-D demands

Table 4-6: Scenario configurations and estimated demands used to illustrate the
impact of seed O-D demand reliability factors

Scenario Seed O-D
(vph)

Seed Reliability Estimated O-D
(vph)

tAC tAD tBC tBD RAC RAD RBC RBD TAC TAD TBC TBD
1 10 10 10 10 0 0 0 0 40.0 60.0 40.0 60.0
2 5 10 1 15 0 0 0 0 42.3 57.7 37.7 62.3
3a 5 10 1 15 1 0 0 0 5.0 95.0 75.0 25.0
3b 5 10 1 15 0 1 0 0 85.0 10.0 0.0 105.0
3c 5 10 1 15 0 0.2 0 0 45.1 54.9 34.9 65.1

As indicated in Table 4-6, when no prior information is known, the LSE model estimates
a demand for Scenario 1 that is the same as the maximum likelihood solution. The demand
estimate for Scenario 2, when prior information of uniform reliability exists, is, as expected,
not equal to estimate of Scenario 1. In Scenario 1, an O-D estimate is made in the absence of
any prior information. In Scenario 2, knowledge of a prior demand matrix is used as a
starting estimate and modified to reflect the existing link flows.

Scenario 3a illustrates the impact of the prior O-D demand estimate, tAC, being known
with certainty. Consistent with the intent of seed reliability factors, the estimated demand has
preserved the magnitude of the prior demand tAC, since this value was known to be
completely accurate. Scenario 3b indicates this same result when another seed demand is
known with certainty. Scenario 3c illustrates the impact of knowing that a seed demand is
somewhat more reliable than the other seed demands. It would be expected that the estimate
of TAD would fall somewhere between 57.7 vph, the value obtained when the seed in not
known with any degree of confidence, and 10.0 vph, the value obtained when the seed
demand is known with certainty. The estimate of 54.9 vph for TAD does fall between these
two limits and, as the seed was known with only a small degree of certainty, the estimated
value is more similar to the value obtained when RAD = 0 than when RAD = 1.0.

Figure 4-19 illustrates the estimates of TAD for five different levels of RAD for each
iteration. As expected, when the prior estimate of the demand between zones A and D is
known to be completely accurate (RAD = 1.0), the final estimate of the demand between

B

A C

D

1 3

2 4
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zones A and D is equal to the prior estimate (TAD = 10 vph). When RAD = 0, all prior
information is known to the same degree of certainty, and as indicated in Scenario 2 of Table
4-6, the estimate for the demand TAD = 57.7 vph. If the prior knowledge of the demand
between zones A and D (tAD = 10 vph) is not perfectly reliable, but is known with a high
level of confidence (i.e. RAD = 0.75), then it would be expected that the final estimate of TAD
would not be very different from the prior estimate of 10 vph. For this example, when RAD =
0.75, TAD is estimated to be 37.3, vph which, though different from 10 vph (when RAD =
1.0), is also quite different from 57.7 vph, the value of TAD when RAD =0.

Figure 4-20 illustrates the similarity of the estimated demand TAD to the seed demand tAD
as a function of the seed reliability factor RAD. The similarity between the estimated and seed
demand is measured by the relative distance that the estimated demand is from the seed
demand (Equation [4-35]).
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[4-35]

It is clear that the relationship between the seed reliability factor and the Similarity
Index, in this example, is non-linear. However, this relationship is likely to be dependent on
network conditions, so that in general, the relationship between Rij and the Similarity Index
is not known a priori. The effect of Rij is a function of how quickly the other available O-D
demands can be altered from their prior estimate values to converge to a solution that
minimizes the objective function. If all other O-D demands are constrained, then any value of
Rij less than 1.0 results in the same final solution. The only impact of that Rij has under these
conditions is to change the number of iterations required by the algorithm to converge.

Figure 4-21 illustrates the final O-D estimates for each of the four possible demands, for
the complete range of values of RAD. Here again, the impact of RAD on TAD can be seen. As
more confidence is placed on the prior estimate of TAD, the closer the final estimate is to the
prior estimate. In this case, for each value of RAD, the four estimated demands represent a
feasible solution which exactly replicates the observed link flow.
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Figure 4-19: Intermediate estimates of O-D demand TAD for different levels of seed
O-D demand reliability

Figure 4-20: Similarity of estimated demand (TAD) to seed demand (tAD) as a
function of seed reliability factor (RAD)
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Figure 4-21: Final estimates of O-D demands for different levels of seed O-D
demand reliability (tAD)

4.7 Impact of Redundant Link Flows
In Chapter 3, it was shown that the link-count based maximum likelihood model was
sensitive to the presence of redundant link flow information, while the trip-based model was
not. Utilizing the four-link network presented in Figure 4-18, the results in Table 4-3 indicate
that the LSE model estimates are sensitive to the presence of redundant link flow
information. However, as discussed in Section 3.6.3, since link flow continuity rarely exists
in field data, link flow data that are completely redundant rarely exist, and the LSE model's
sensitivity to redundant link flow data, is not of great concern.

Table 4-7: LSE model O-D estimates for a four link network with redundant link
flows

O-D Trip LSE Model
Based Links having observed flows
Model all 1,2,3 1,2,4 1,3,4 2,3,4

A-C 12.5 12.5 11.67 13.33 11.67 13.33
A-D 12.5 12.5 11.67 13.33 13.33 11.67
B-C 10.5 10.5 9.67 11.33 11.33 9.67
B-D 17.5 17.5 16.67 18.33 16.67 18.33
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4.8 Summary
This chapter has described the development of a model based on the assumption that
estimated O-D demands should minimize the squared link flow errors. The resulting model is
comparable to an unconstrained multiple linear regression model. It has been shown that this
formulation permits negative demand estimates, and that truncation of negative estimates can
result in the acceptance of sub-optimal solutions.

It has also been shown that observed link flow data are often obtained from different
sources and are known with different levels of confidence. A link flow reliability factor was
incorporated into the model formulation that performs a function which is analogous to that
of the weights in a weighted least squares regression. Two approaches for computing these
factors have been suggested. The first utilizes the inverse of the variance of link flows
computed from a time series of observations, while the second is heuristic and uses the
magnitude of flow discontinuities at nodes to determine link flow reliability factors.

The model was illustrated analytically for four different simple network examples. These
network examples considered link flow continuity and discontinuity, multipath routings, and
link flow reliability.

The formal solution to the model formulation was given in matrix notation. It was noted
that a solution exists only if the inverse to the [PtP] matrix could be found. In general, it
cannot be stated that this inverse always exists. In particular, when multiple solutions exist,
[PtP] is singular and cannot be inverted.

An iterative solution algorithm was proposed which is applicable regardless of the
number of feasible solutions,. This algorithm, which is a modification of the Jacobi iterative
solution technique, successively modifies an initial seed matrix based on the differences
between observed and estimated link flow errors resulting from the previous iteration. The
iterative technique incorporates a relaxation factor in order to achieve convergence in
situations when diagonal dominance does not exist in the system of constraint equations.

This algorithm was applied to a simple example problem having multiple feasible
solutions. The algorithm was shown to converge successfully and, when the seed matrix was
uniform, led to a solution that closely approximated the most likely solution. It was also
shown that the algorithm provides O-D estimates that are optimal under non-negativity
constraints.

Since, in practice, prior information often has varying degrees of reliability associated
with it, seed O-D reliability factors were introduced into the algorithm. Using a simple
example network, the effect of using these seed O-D demand reliability factors was shown to
be consistent with intuition.

Chapter 5 presents another model which is based on a procedure for minimizing the
relative link flow error rather than the absolute link flow differences. The presentation of the
development of this model parallels the presentation in this chapter. In Chapter 6, both
models are extended to permit the estimation of time varying O-D demands. Subsequently,
Chapter 7 will describe the application of both models to a 35 kilometer section of freeway
in Toronto, Ontario, for the estimation of time varying demands.
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CHAPTER 5

DEVELOPMENT OF A LEAST RELATIVE
ERROR O-D ESTIMATION MODEL

5.1 Introduction
The least relative error (LRE) model described in this chapter is based on the premise that
the estimated O-D should minimize some measure of the relative link flow differences. As
will be shown, this premise leads to a solution algorithm that iteratively corrects an initial
seed matrix through successive multiplication of correction factors. This method does not
require observed link flows to exhibit either node or path flow continuity.

This chapter first describes the development of the LRE model, following which the
mathematical basis of the model is presented. The associated link flow error function is
defined and illustrated, and the model formulation is illustrated using the same three simple
example network scenarios that were examined in Chapter 4. These scenarios serve to
illustrate the model's ability to function correctly when flow continuity, flow discontinuity,
and multipath routes are considered. Characteristics of the model formulation are identified
and examined. It is shown that a formal solution to the model formulation cannot be solved
for algebraically, but that an iterative solution algorithm can solve the model formulation.

5.2 Development of the LRE Model
In the previous chapter, the mathematical basis for the LSE model was presented. The
premise for the LSE model is that the best unbiased estimate of a target O-D matrix can be
defined as the one which minimizes the squared errors between a set of observed and
estimated link flows. However, this premise leads to a model formulation that may lead to
negative demand estimates, and which considers only the magnitude of the link flow errors,
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not their size relative to the observed (or true) flow. The modified Jacobi iterative solution
method used to solve the LSE model formulation prevented the estimation of negative
demands through the introduction of non-negativity constraints, and required the introduction
of a relaxation factor, which, if insufficiently small, prevented convergence of the algorithm.
In this chapter, a model is formulated that incorporates non-negativity constraints, considers
a different error function, and does not require the introduction of a relaxation factor within
the solution algorithm.

5.2.1 Mathematical basis
The mathematical derivation of the relative link flow error model is initiated by defining a
suitable relative link flow error function. This function, provided in Equation [5-1], explicitly
reflects the relative size of link flow errors, and attributes the same amount of error to the
objective function when under-estimating link flows as when overestimating flows.
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where: a = link identifier
ER = total relative link flow error (dimensionless)
Va = estimated flow on link a (vph)
V'a = observed flow on link a (vph)

Figure 5-1 illustrates the change of ER as a function of the ratio of estimated to observed
flow. It can be noted that ER is only sensitive to the ratio of the flows. For example, the
contribution to the error function when the estimated flow is five times less than the observed
flow (Point A), is the same as when an estimated flow is five times larger than the observed
flow (Point B). Therefore, the error function does not differentiate between underestimation
or overestimation of the estimated flow.

It should also be noted that when the estimated and observed flows on a given link are
equal, then the contribution of that link to the error function is equal to zero. This is a
desirable characteristic as it provides an appropriate scale in which the global minimum error
is achieved when ER = 0.
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Figure 5-1: Illustration of the functional form of the LRE model's error function

Having defined a suitable error function, the objective is to identify a set of solutions that
minimizes ER. Since ER is a continuous convex function, its minimum can be found by
computing the partial derivative of ER with respect to each unknown O-D demand (Tij) in
turn, and setting each resulting equation equal to zero (Equation [5-2]). On the basis of
Equation [5-3], Equation [5-2] can be transformed to provide Equation [5-2].
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where: a = link identifier
ER = total relative link flow error (dimensionless)
Va = estimated flow on link a (vph)
V'a = observed flow on link a (vph)
Tij = demand between origin i and destination j (vph)

Equation [5-3] expresses the estimated link flow Va, in terms of the as yet unknown
demands. Since each O-D demand (Tij) can appear in Equation [5-4] not more than once, the
partial derivative of Va with respect to some unknown demand Tij is simply the proportion of
that demand contributing to the flow on link a (Equation [5-4]).
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where: a = link identifier
Va = estimated flow on link a (vph)
Tij = demand between origin i and destination j (vph)

a
ijP = probability that demand between i and j will use link a

Substituting Equation [5-4] into Equation [5-2] results in a system of N non-linear
equations in terms of N unknown O-D demand traffic demands (Equations [5-5a] and [5-
5b]). One may note, however, that not all of these N equations are necessarily independent,
implying that, similar to the LSE model, the existence of a unique solution is not guaranteed.
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Since e ex x∑ =∏ , it is possible to transform Equation [5-5b] into Equation [5-5c] by raising
each side of the equation to the exponent e.
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where: a = link identifier
Va = estimated flow on link a (vph)
V'a = observed flow on link a (vph)
Tij = demand between origin i and destination j (vph)

a
ijP = probability that demand between i and j will use link a

A closer inspection of Equation [5-7c] indicates that, when considering some link a, that
is not part of any route between origin i and destination j (i.e., Pij

a  = 0), there is no
contribution to the product. Therefore, Equation [5-7c] can be simplified such that the
product need be across only those links which are on a path between origin i and destination
j.
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where: r = any link on a route between origin i and destination j
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Two important characteristics of Equation [5-7d] can be identified:
1. Any O-D demand matrix, that results in estimated link flows that are exactly equal to

the observed flows, satisfies the system of non-linear constraints.
2. If the observed flow on a link is zero and this link is utilized by an O-D, then either

this particular O-D's demand is equal to zero, or the observed flow is erroneous, or
the assumed route (and thus Pij

a ) is incorrect. Therefore, in the event that an observed
link flow of zero is encountered, two courses of action can be taken. One can choose
to ignore the link entirely, implying that little confidence is placed in the observed
flow of zero. Second, one can impart some small but arbitrary non-zero, finite flow to
the link. If this imparted flow is small, (i.e. 1 vph) it will tend to force the demands
utilizing that link to become much smaller. These approaches, and their impacts, are
discussed in more detail later in this thesis.

The LRE model formulation leads to a system of non-linear equations described by
Equation [5-8]. This system of non-linear constraints does not require estimated link flows to
exactly match those observed, implying that neither node flow nor path flow continuity need
exist. This permits the LRE model to be applied to actual networks using field link flow data,
something which was not possible always with the formulations of Van Zuylen and
Willumsen (1980) that were examined earlier.
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where: r = any link on a route between origin i and destination j
Vr = estimated flow on link r (vph)
V'r = observed flow on link r (vph)

a
ijP = probability that demand between i and j will use link r

5.2.2 Example with link flow continuity
It is useful to illustrate the effect of the above system of constraints using the same examples
that were used in Chapter 4 to illustrate the LSE model. For convenience an illustration of
each network is again provided.

Consider the simple three-link network in Figure 5-1 having two origin - destination
demands. Based on Equation [5-8], the system of non-linear constraints for this example
consists of the following two non-linear expressions:
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Unfortunately, unlike the linear constraints developed in Chapter 4, these non-linear
constraints cannot be explicitly solved for algebraically to yield a closed form solution for
TAB and TAC. Therefore, the appropriateness of the model formulation will first be illustrated
by enumerating all possible O-D combinations within a reasonable range. Having
demonstrated the relevance of the LRE model formulation for a simple network, the problem
of solving the formulation in a manner that is more efficient and practical than performing a
complete enumeration will be examined next.

Since the above network provides a uniquely utilized link for each of the two unknown
O-D demands, it is a trivial task to determine the correct O-D matrix when node and path
flow continuity exist. For example, if the observed link flows are V'1=50 vph, V'2=20 vph,
and V'3=30 vph, then intuitively it can be seen that the unknown demands must be TAB=20
vph and TAC=30 vph. Since it is not possible to algebraically solve for TAB and TAC, we
compute the left hand side of the constraint equations for a number of possible O-D
demands. The O-D demand that satisfies the constraints is the one that results in both
constraint equations equaling 1.0. These results, provided in Table 5-1a, indicate that the
only demand that simultaneously satisfies both of the constraint equations is TAB=20 vph and
TAC =30 vph, which is the correct solution. Table 5-1b indicates that this solution also
represents a minimum to the objective function of Equation 5-1.

This simple example indicates that when a single unique O-D solution exists that exactly
replicates the observed link flows, the LRE model formulation identifies the correct solution.
The estimation of O-D demands, when there exists only one single solution that replicates
the observed link flows, is the simplest O-D estimation problem. Having shown the validity
of the LRE model formulation for this simple case, we will examine in the next section the
application of the LRE model to a situation in which there does not exist an O-D demand that
exactly replicates the observed link flows.

Figure 5-2: Example three-link network
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Table 5-1a: Left hand side of non-linear constraints computed for several O-D
demands (vph)

TAC TAB
5 10 15 20 25

AB AC AB AC AB AC AB AC AB AC
5 0.645 0.595 0.861 0.645 0.937 0.668 0.973 0.680 0.992 0.11

10 0.699 0.827 0.891 0.856 0.954 0.871 0.983 0.881 0.999 0.48
15 0.724 0.912 0.908 0.929 0.964 0.939 0.990 0.945 1.003 0.70
20 0.737 0.953 0.917 0.963 0.971 0.970 0.994 0.974 1.007 0.83
25 0.745 0.976 0.924 0.983 0.976 0.987 0.998 0.990 1.009 0.91
30 0.750 0.990 0.928 0.994 0.979 0.998 1.000 1.000 1.011 0.96
35 0.754 0.999 0.931 1.002 0.981 1.004 1.002 1.006 1.012 1.00
40 0.756 1.005 0.933 1.007 0.983 1.009 1.003 1.010 1.013 1.02
45 0.758 1.009 0.935 1.011 0.984 1.012 1.004 1.013 1.014 1.04
50 0.759 1.012 0.936 1.013 0.985 1.014 1.005 1.015 1.014 1.05
55 0.760 1.014 0.937 1.015 0.986 1.016 1.005 1.017 1.015 1.06
60 0.761 1.016 0.938 1.016 0.986 1.017 1.006 1.018 1.015 1.07
65 0.762 1.017 0.938 1.017 0.987 1.018 1.006 1.018 1.016 1.07
70 0.762 1.018 0.939 1.018 0.987 1.019 1.007 1.019 1.016 1.08
75 0.762 1.018 0.939 1.019 0.987 1.019 1.007 1.019 1.016 1.08

Table 5-1b: Relative link flow error (ER) for all potential O-D solutions in the
vicinity of the analytical solution

TAC TAB
5 10 15 20 25 30 35

5 7.7225 5.1404 4.1328 3.6909 3.5211 3.5020 3.5734
10 4.5783 2.5270 1.7702 1.4679 1.3840 1.4211 1.5312
15 3.2419 1.4414 0.8242 0.6077 0.5800 0.6560 0.7936
20 2.5667 0.9058 0.3744 0.2142 0.2253 0.3288 0.4867
25 2.2160 0.6409 0.1658 0.0443 0.0830 0.2067 0.3797
30 2.0490 0.5302 0.0939 0.0000 0.0589 0.1976 0.3820
35 1.9954 0.5153 0.1065 0.0328 0.1068 0.2570 0.4501
40 2.0157 0.5632 0.1746 0.1160 0.2014 0.3604 0.5603
45 2.0862 0.6539 0.2804 0.2332 0.3274 0.4932 0.6985
50 2.1918 0.7746 0.4125 0.3742 0.4751 0.6462 0.8557
55 2.3225 0.9167 0.5634 0.5318 0.6381 0.8134 1.0261

5.2.3 Example with link flow discontinuity
A less trivial O-D estimation task than the one in Section 5.2.2 is the determination of the
most appropriate O-D matrix when path and node flow continuity do not exist. Using the
same three-link network used in Section 5.2.2, one may consider the observed link flows of
V'1=50 vph, V'2=35 vph, and V'3=30 vph. Due to the lack of flow continuity, no O-D demand
can be found that exactly replicates the observed link flows, and it is not immediately
apparent what O-D matrix should be chosen in order to minimize the total relative link flow
error. Again, the LRE model formulation is applied by computing the left hand side of the
constraint equations for a number of possible O-D demands. The results of these
computations, which are provided in Table 5-1a, indicate that the only demand that
simultaneously satisfies both of the constraint equations is TAB=32 vph and TAC =28 vph. The
application of these demands to the network results in estimated link flows of V1=60 vph,
V2=32 vph, and V3=28 vph, which do not replicate those observed, but do provide the lowest
possible relative link flow error. The latter fact is illustrated in Table 5-1b, which provides
the objective function values for each candidate O-D matrix.
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Table 5-2a: Left hand side of non-linear constraints computed for several O-D
demands for a network exhibiting link flow discontinuity (vph)

TAC TAB
30 31 32 33 34

AB AC AB AC AB AC AB AC AB AC
25 0.997 0.994 0.998 0.995 0.999 0.995 1.001 0.995 1.002 0.996
26 0.997 0.997 0.998 0.997 1.000 0.997 1.001 0.997 1.002 0.998
27 0.997 0.998 0.999 0.999 1.000 0.999 1.001 0.999 1.002 0.999
28 0.997 1.000 0.999 1.000 1.000 1.000 1.001 1.001 1.003 1.001
29 0.998 1.002 0.999 1.002 1.000 1.002 1.002 1.002 1.003 1.003
30 0.998 1.003 0.999 1.003 1.001 1.003 1.002 1.004 1.003 1.004
31 0.998 1.004 1.000 1.005 1.001 1.005 1.002 1.005 1.003 1.005
32 0.998 1.006 1.000 1.006 1.001 1.006 1.002 1.006 1.003 1.006
33 0.999 1.007 1.000 1.007 1.001 1.007 1.002 1.007 1.004 1.007
34 0.999 1.008 1.000 1.008 1.001 1.008 1.003 1.008 1.004 1.008
35 0.999 1.008 1.000 1.009 1.002 1.009 1.003 1.009 1.004 1.009
36 0.999 1.009 1.000 1.009 1.002 1.010 1.003 1.010 1.004 1.010
37 0.999 1.010 1.001 1.010 1.002 1.010 1.003 1.011 1.004 1.011
38 0.999 1.011 1.001 1.011 1.002 1.011 1.003 1.011 1.004 1.011
39 1.000 1.011 1.001 1.012 1.002 1.012 1.003 1.012 1.004 1.012

The squared natural logarithm of the relative link flow error (ER) associated with the
suggested solution is computed to be 0.0460. To illustrate that the above suggested solution
minimizes the relative link flow error, an enumeration of the link flow error of all potential
O-D solutions located near the suggested optimum can be carried out. The results of this
enumeration, presented in Table 5-1b, indicate that the suggested solution has the smallest
associated relative link flow error. Figure 5-3 graphically portrays these data to illustrate that
the objective function is concave in the vicinity of the optimum solution.

Table 5-1b: Relative link flow error (ER) for all potential O-D solutions in the
vicinity of the analytical solution for a network exhibiting link flow
discontinuity

TAC TAB
30 31 32 33 34 35 36

25 0.0661 0.0608 0.0584 0.0587 0.0615 0.0665 0.0736
26 0.0571 0.0524 0.0505 0.0513 0.0546 0.0600 0.0675
27 0.0520 0.0479 0.0465 0.0478 0.0515 0.0574 0.0653
28 0.0506 0.0469 0.0460 0.0478 0.0519 0.0582 0.0665
29 0.0523 0.0491 0.0487 0.0509 0.0554 0.0621 0.0708
30 0.0570 0.0543 0.0543 0.0569 0.0618 0.0688 0.0779
31 0.0644 0.0621 0.0625 0.0655 0.0708 0.0782 0.0875
32 0.0742 0.0723 0.0731 0.0765 0.0821 0.0898 0.0995
33 0.0863 0.0848 0.0859 0.0896 0.0956 0.1036 0.1136
34 0.1004 0.0992 0.1008 0.1048 0.1111 0.1194 0.1297
35 0.1164 0.1156 0.1174 0.1218 0.1283 0.1370 0.1475
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Figure 5-3: Graphical illustration of the concavity of the relative link flow error
function in the vicinity of the optimal solution

Since it is not clear what the correct solution to this example should be, it is of interest to
compare the demand estimated by the LRE model with the demand estimated by the LSE
model (Section 4.2.3). The LSE model indicates that the optimum demand is TAB=30 vph
and TAC=25 vph, while the LRE model indicates that the optimum demand is TAB=32 vph
and TAC=28 vph. It is not possible to state categorically which model provides a more
accurate O-D estimate, as the most accurate solution cannot be defined in absolute terms
since this depends on the measure of error that is chosen. It is also interesting to note that the
LRE model estimates a total of 60 trips, while the LSE only estimates a total of 55 trips. The
LRE model does not, however, always estimate more trips than the LSE model, as can be
readily demonstrated by a very simple example.

Consider a two-link linear network having one O-D demand, T, and observed flows of
V'1 = 20 and V'2 = 40. The LSE model formulation expressed in Equation [4-6] leads to the
following linear expression:

(T - V'1) + (T - V'2) = 0

T = (V'1 + V'2)/2 = (20 + 40)/2 = 30
The LRE model formulation expressed in Equation [5-8] leads to the following non-

linear expression:
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In contrast to the previous example, the number of trips estimated by the LRE model
(28.3) in this example, is less than the number estimated by the LSE model (30). Thus, no
general statement can be made concerning the total number of trips estimated by the LRE
model relative to the LSE model.

5.2.4 Example with multipath routes
The illustration of the appropriateness of the proposed system of non-linear constraints has
been limited thus far to an example in which all-or-nothing routes have been assumed. It is
instructive to demonstrate the appropriateness of the constraints for a simple example in
which multipath routes are assumed. Consider the network in Figure 5-2 in which there
exists two routes between zones A and C. Assume that the observed link flows are V'1=30
vph, V'2=20 vph, V'3=10 vph, and V'4=20 vph and that 2/3 of the traffic demand between
zones A and C use link 4.

Since the LRE formulation expressed in Equation [5-8] leads to a system of non-linear
constraints that cannot be solved analytically, the left hand sides of the two constraint
equations are computed for a range of potential O-D demand solutions and presented in
Table 5-3. These results indicate that, despite the multiple paths between zones A and C, the
solution space contains only a single solution. Since the above network provides a uniquely
utilized link for each of the two unknown O-D demands, and since node and path flow
continuity exist in the observed link flow data, the O-D demand of TAB=20 vph and TAC=30
vph satisfies the constraint equations. Once again, the proposed model formulation leads to
the selection of the correct O-D demand.

Figure 5-4: Example four-link network exhibiting multiple paths between an origin
and destination zone
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Table 5-3: Left hand side of non-linear constraints computed for several O-D
demands for a network exhibiting multipath routes (vph)

TAC TAB
18 19 20 21 22

AB AC AB AC AB AC AB AC AB AC
25 0.989 0.984 0.994 0.984 0.998 0.985 1.002 0.985 1.005 0.986
26 0.990 0.988 0.994 0.988 0.998 0.989 1.002 0.989 1.005 0.989
27 0.990 0.991 0.995 0.991 0.999 0.992 1.002 0.992 1.005 0.993
28 0.991 0.994 0.995 0.994 0.999 0.995 1.003 0.995 1.006 0.996
29 0.991 0.997 0.996 0.997 1.000 0.998 1.003 0.998 1.006 0.998
30 0.992 0.999 0.996 1.000 1.000 1.000 1.003 1.000 1.006 1.001
31 0.992 1.001 0.997 1.002 1.000 1.002 1.004 1.003 1.007 1.003
32 0.993 1.004 0.997 1.004 1.001 1.004 1.004 1.005 1.007 1.005
33 0.993 1.005 0.997 1.006 1.001 1.006 1.004 1.006 1.007 1.007
34 0.993 1.007 0.998 1.008 1.001 1.008 1.005 1.008 1.008 1.008
35 0.994 1.009 0.998 1.009 1.002 1.009 1.005 1.010 1.008 1.010
36 0.994 1.010 0.998 1.011 1.002 1.011 1.005 1.011 1.008 1.011
37 0.995 1.012 0.999 1.012 1.002 1.012 1.005 1.012 1.008 1.013
38 0.995 1.013 0.999 1.013 1.003 1.013 1.006 1.014 1.009 1.014
39 0.995 1.014 0.999 1.014 1.003 1.015 1.006 1.015 1.009 1.015

5.3 Incorporation of Link Flow Reliability
It is also desirable to incorporate a relative link flow reliability factor (Ra) into the LRE
model formulation. This is accomplished in much the same fashion as was done with the
LSE model discussed in Chapter 4. Specifically, the relative reliability of observed link flows
is incorporated into the error function expressed in Equation [5-1], to produce Equation [5-
9].

Following the same development as presented in Section 5.2.1, it can be shown that
minimizing the error function which is presented in Equation [5-9] results in the system of
non-linear constraints expressed by Equation [5-10].
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where: a = link identifier
ER = total relative link flow error
Va = estimated flow on link a (vph)
V'a = observed flow on link a (vph)
Ra =  relative link flow reliability (0 ≤ Ra ≤ 1.0)
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5.4 Characteristics of Formulation
Similar to the analysis carried out in Chapter 4 for the LSE model, this section will examine
some of the more interesting characteristics of the LRE model formulation. In the
examination of the LSE model, it was stated that the formulation's ability to estimate
negative demands, in the absence of explicit non-negativity constraints, was undesirable. It is
of interest here to examine whether the LRE formulation requires similar guards against
possible solutions which are actually negative demand estimates.
The fact that the LRE model does not permit the estimation of negative demands can be
shown to be true by examining the general formulation presented in Equation [5-10], which
can be expressed by Equation [5-11a].
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and: r = link identifier
ER = total relative link flow error
Vr = estimated flow on link r (vph)
V'r = observed flow on link r (vph)
Rr =  relative link flow reliability (0 ≤ Rr ≤ 1.0)

It is known that the observed link flow, V'r, must always be positive. If a demand Tij, is
negative, then the link flow resulting from this demand, Vr, will also be negative. Assuming
that a demand is negative, let us determine if Equation [5-11b] is feasible.
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In Equation [5-11b], the exponent 0.1≤r
r

ij VP , the calculation of Xr requires that the
root of a negative number be found. This is not possible to do without resorting to complex
numbers, which do not have any physical meaning within this context. Therefore, it is not
possible for negative demands to satisfy the system of constraints expressed by the LRE
model.
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5.5 Development of a Solution Algorithm

5.5.1 Formal solution
Unlike the LSE model, a formal closed form algebraic solution does not exist for solving the
LRE model. Equation [5-10] cannot be written explicitly in terms of the estimated flow,
which is itself a function of the unknown demands Tij. Despite this lack of a formal solution,
it is still possible to solve iteratively for the unknown demands. This iterative approach is
described in the next section.

5.5.2 Iterative solution algorithm
This section presents an iterative solution algorithm for solving the LRE model defined by
Equation [5-10]. This algorithm, which is similar to the modified Jacobi iterative method
developed in Section 4.5.3, is presented without proof that it satisfies the formulated
constraints or that it minimizes the objective function. However, its ability to do both is
illustrated using the same simple network examined earlier. Further characteristics of the
algorithm are also examined. Similar to the original mathematical formulation, the iterative
solution algorithm requires that all link use probabilities be exogeneously defined. It is also
assumed that a prior matrix exists, though all cell entries may be set to be equal to each
other, when no prior knowledge is available.

The first step in this algorithm requires that Equation [5-12] be used to compute the left
hand side of Equation [5-10] for each O-D pair, based on the initial demands and the known
link use probabilities. When Cij is equal to 1.0 for all i and j, then the constraints of Equation
[5-10] are satisfied. However, if Cij is not equal to 1.0, then Tij is not yet optimal and some
change to Tij is possible that will reduce ER. The existing estimate of Tij is then successively
modified by the magnitude of Cij as expressed by Equation [5-13].

∏ 





′

=
r

VPR

r

r
ij

r
r

ijr

V
VC

2

[5-12]

ijn
ij

l
ij

l
ij CTT

11 −+ ×= [5-13]

where: nij = ∑ 












r r

r
ijr

V
PR 22

V'r = observed flow on link r (vph)
Vr = estimated flow on link r (vph)
Pijr = probability that demand between i and j will use link r
 l = iteration number
Rr =  relative link flow reliability (0 ≤ Rr ≤ 1.0)

Physically, the geometric average of the relative flow errors across all links that each
demand traverses is computed, and the current demand estimate is multiplied by the inverse
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of this average error. Since the average flow error across all utilized links is computed,
iterative changes to all contributing demands are allocated in a systematic manner. This
approach automatically leads to the selection of a demand, that is the most likely solution,
when multiple solutions exist.

The iterative solution algorithm is presented in Table 5-4 while potential stopping criteria
for this algorithm are examined in the next section.

Table 5-4: LRE iterative solution algorithm
Step Description Equation

Initially, the iteration counter is set to zero l = 0
1 Use the prior matrix as the initial estimate of the

unknown demand matrix
Tij = tij ∀ij

2 Assign the current estimate of demand to the
network using known link use probabilities ( ) ij
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5 Increment the iteration counter l = l +1
6 If stopping criteria not yet met, go to Step 2 See section 5.5.2

5.5.3 Algorithm stopping criteria
Since the algorithm proposed in Section 5.5.1 is iterative in nature, criteria must be defined
that can be used to determine when enough iterations have been carried out. An obvious
candidate criterion to use is the link flow error function, ER. The algorithm has been
formulated to ensure that ER never increases if more iterations are carried out. Unfortunately,
since ER is the squared natural logarithm of the ratio of estimated to observed flows, its
magnitude usually has little physical meaning. Using Equation [5-28], it is possible to
determine the average relative link flow error based on ER. The true average relative link
flow error is computed from Equation [5-29] in which the flow to be used in the numerator
and denominator is chosen to ensure that the ratio is always greater than one.
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* If seed O-D demand reliability factors are to be considered, then Equation [5-34] from
Section 5.6 must be used instead of the equation presented here.
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where: V1 = smaller of the observed or the estimated link flow (vph)
V2 = greater of the observed or the estimated link flow (vph)
N = number of links over which the total error has been computed

Equation [5-15] provides an estimate of the average estimated link flow as a proportion
of the observed flows. The average absolute link flow error can also be computed using
Equation [5-30] while the true average absolute link flow error is determined from Equation
[5-31].

( )VEE n
RR ′−= 1 [5-16]

∑ ′−=
a

aaN
abs
R VVE 1 [5-17]

where: V'a = observed flow on link a (vph)
Va = estimated flow on link a (vph)
V ′ = average observed link flow (vph)
N = number of links over which error has been computed

Before continuing with the examination of additional candidate stopping criteria, it is
instructive to examine the relative accuracy of using Equations [5-28]and [5-30] to
approximate Equations [5-29] and [5-31], respectively.

Figure 5-5 provides a comparison between the actual relative error and the relative error
estimated from ER. As can be seen, the estimated relative error consistently underestimates
the true relative error. This underestimation is particularly severe when the estimated flow is
much smaller than the observed flow. When the estimated flow is reasonably similar to the
observed flow (say within 50% of the observed flow) then the estimated relative error is a
sufficiently accurate approximation of the actual relative error.

Figure 5-6 provides a comparison between the true absolute error and the absolute error
estimated from ER. As can be seen, the estimated absolute error underestimates the true
absolute error over a significant range. Furthermore, the magnitude of underestimation is not
constant. The estimated error is greater than the true error only when the flow difference is
less than 65% of the observed flow. Clearly, the average absolute flow differences estimated
by Equation [5-30] must be interpreted with some caution.
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Figure 5-5: Comparison of actual average relative error (Equation [5-29]) and
average relative error estimated using Equation [5-28] over a range of
flow errors

Figure 5-6: Comparison of actual absolute error (Equation [5-31]) and absolute
error estimated using Equation [5-30] over a range of flow errors
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Finally, it is advantageous to develop a stopping criteria that is based on the marginal
decrease in link flow error. If each subsequent iteration of the algorithm provides a large
reduction in the link flow error, then carrying out further iterations is likely to be beneficial.
If the marginal reduction in link flow error is very small, then regardless of the absolute or
relative measures of error, further iterations are not likely to result in significant reductions in
error. An appropriate measure of the marginal reduction in link flow error is obtained by
computing the difference between the average relative link flow error of the previous
iteration, with that of the current iteration.

( ) ( )in
R

in
R

n
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where: i = the current iteration number
As noted in Chapter 4 for the LSE model, a measure of the marginal improvement is

likely the most appropriate stopping criterion.

5.5.4 Application of iterative algorithm to a simple network
having multiple solutions

We illustrate the iterative solution technique by way of a variation of the now familiar
example two-link network. Consider the four-link network in Figure 5-7 in which three
feasible O-D demands exist (TAB, TAC, and TBC).

To be able to compare the LRE model estimates with the maximum likelihood solutions
determined in Chapter 3, it is initially assumed that links 3 and 4 are not utilized by any of
the demands. The observed flows are assumed to be V'1=16 vph, V'2=18 vph, V'3=0 vph, and
V'4=0 vph. Table 5-5 provides the results from each step of the iterative algorithm.

Figure 5-7: Example four-link network in which multiple feasible O-D solutions
are possible

Table 5-5: Iterative algorithm results of LRE model for a simple example network
with multiple solutions and all-or-nothing routings

Estimated Demand
(vph)

Estimated Link Flow
(vph)

Correction Factor

Iter TAB TAC TBC V1 V2 V3 V4 CAB CAC CBC ER
0 5.00 5.00 5.00 10.00 10.00 0.00 0.00 0.954 0.900 0.943 0.5664
1 8.00 8.49 9.00 16.49 17.49 0.00 0.00 1.002 1.000 0.998 0.0017
2 7.86 8.48 9.15 16.34 17.63 0.00 0.00 1.001 1.000 0.999 0.0009
3 7.76 8.48 9.26 16.23 17.73 0.00 0.00 1.001 1.000 0.999 0.0004
4 7.69 8.47 9.34 16.16 17.81 0.00 0.00 1.001 1.000 0.999 0.0002
5 7.64 8.47 9.39 16.11 17.86 0.00 0.00 1.000 1.000 1.000 0.0001

A B1 2 C

3 4
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6 7.61 8.47 9.43 16.08 17.90 0.00 0.00 1.000 1.000 1.000 0.0001
7 7.58 8.47 9.46 16.06 17.93 0.00 0.00 1.000 1.000 1.000 0.0000
8 7.57 8.47 9.48 16.04 17.95 0.00 0.00 1.000 1.000 1.000 0.0000
9 7.56 8.47 9.50 16.03 17.97 0.00 0.00 1.000 1.000 1.000 0.0000

10 7.55 8.47 9.51 16.02 17.98 0.00 0.00 1.000 1.000 1.000 0.0000
11 7.54 8.47 9.51 16.01 17.98 0.00 0.00 1.000 1.000 1.000 0.0000
12 7.54 8.47 9.52 16.01 17.99 0.00 0.00 1.000 1.000 1.000 0.0000
13 7.54 8.47 9.52 16.01 17.99 0.00 0.00 1.000 1.000 1.000 0.0000
14 7.53 8.47 9.52 16.00 17.99 0.00 0.00 1.000 1.000 1.000 0.0000
15 7.53 8.47 9.53 16.00 18.00 0.00 0.00 1.000 1.000 1.000 0.0000

The results presented in Table 5-5 permit a number of conclusions to be made. First, the
LRE model estimates an O-D having an associated link flow error of zero. This indicates that
the estimated demand exactly replicates the observed link flows. Second, even though
multiple O-D solutions exist which replicate the observed link flows, the estimated O-D
demand is equal to the maximum likelihood solution determined in Chapter 3 (TAB = 7.53,
TAC = 8.47, TBC = 9.53). Third, the algorithm converges rapidly to the final solution.

It is useful to provide a graphical representation of the estimated O-D demands and
resulting link flows at each iteration. It is evident from Figure 5-8, which illustrates the O-D
demand estimates for each of the first 15 iterations of the algorithm, that the iterative
modifications made to the initial seed demand are initially large, but become progressively
smaller as the estimated link flows become more similar to the observed flows. Figure 5-8
also indicates that the successive modifications to the initial seed demand are well behaved,
with no erratic or oscillatory behaviour evident.

Figure 5-9 illustrates the link flows resulting from the O-D demands estimated in each of
the first 15 iterations of the algorithm. Again, the transition of the link flows over successive
iterations is well behaved. The link flows approach the observed link flows of 16 vph and 18
vph for links 1 and 2 respectively.
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Figure 5-8: Iterative estimates of O-D demands for simple example network having
all-or-nothing routes

Figure 5-9: Link flows resulting from estimates of O-D demands for simple
example network having all-or-nothing routes
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5.5.5 Application of iterative algorithm to a simple network
having a single solution with multiple paths

The previous example illustrated the ability of the proposed iterative solution to determine
the most likely solution when a number of feasible solutions exist. However, as this previous
example utilized all-or-nothing routings, link use probability values were restricted to either
0 or 1. It is useful to illustrate the performance characteristics of the algorithm for the same
four-link network in which multipath routings are utilized. It is assumed that the link use
probabilities associated with the network in Figure 5-7 are indicated in Table 5-6:

Table 5-6: Link use probabilities associated with the four-link example network in
which multiple paths exist

Link Number
1 2 3 4

P(AB) 0.6 0 0.4 0.4
P(AC) 0.5 1 0.5 0.5
P(BC) 0 1 0 0

For this example network configuration, it is simple to describe algebraically the O-D
solution as a function of the system of linear constraints (Equation [5-19]).

V'1 = 0.6 TAB + 0.5 TAC + 0.0 TBC [5-19a]
V'2 = 0.0 TAB + 1.0 TAC + 1.0 TBC [5-19b]
V'3 = 0.4 TAB + 0.5 TAC + 0.0 TBC [5-19c]
V'4 = 0.4 TAB + 0.5 TAC + 0.0 TBC [5-19d]

If it is assumed that the observed flows are known exactly, and that node and path
continuity exist, then the flows on links 3 and 4 must be equal (V'3 = V'4). Under these
assumptions, the system of four linear constraints is reduced to a system of three independent
linear constraints that can be solved for the three unknown demands as functions of the
observed link flows (Equation [ 5-20]).

TAB = 5(V'1 - V'3) [5-20a]
TAC = 2(3V'3 - 2V'1) [5-20b]
TBC = V'2 - 6V'3 + 4V'1 [5-20c]

If the observed link flows are assumed to be V'1=19 vph, V'2=30 vph, V'3=16 vph, and
V'4=16 vph, Equation [5-20] indicates that TAB = 15 vph, TAC = 20 vph, and TBC = 10 vph.

Having analytically determined that a single unique demand solution exists that
replicates the observed link flows, one can now examine the results provided by the iterative
algorithm. Figure 5-10 illustrates the rate of convergence of the algorithm by depicting the
O-D demands estimated in each iteration. As indicated, the model estimates of demand
eventually converge to the correct solution, however, this convergence requires
approximately 2000 iterations. Consistent with the results of the previous example, the
magnitude of the modifications, that are made to the demands during each iteration, become
smaller with each additional iteration.
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Figure 5-11 provides the associated relative link flow error (ER) for each iteration. It
should be noted that the x-axis of the figure, denoting the iteration number, has been
logarithmically transformed, providing a clearer illustration of the reduction in error (ER) for
changes in the order of magnitude of the number of iterations performed. If only one iteration
is performed, the resulting error is approximately 0.006. If 10 iterations are performed, the
error is reduced to approximately 0.001. However, performing 100 iterations, only reduces
the error to 0.0007, and 1000 iterations to approximately 0.0. Clearly, though the algorithm
does converge to the correct solution, there exists diminishing returns in terms of the
reductions in error obtained by carrying out additional iterations.

To further explore these diminishing returns, the marginal improvement provided by
each iteration is examined using Equation [5-20]. Figure 5-12 illustrates the marginal
improvement in relative link flow error for each iteration. Note, that plotted values begin at
iteration two, instead of one, as the value of 5.95 for iteration one would dominate all other
values to such an extent that they could not be clearly seen in the figure. Figure 5-12
indicates that the marginal improvement of subsequent iterations decreases exponentially,
such that after 25 iterations, the marginal improvement is less than 0.00001.

These results have several implications for the use of the LRE iterative solution
algorithm:

1. The algorithm ultimately converges to the correct O-D solution.
2. The marginal reduction in relative error decreases approximately exponentially.
3. The rate of convergence of the algorithm is largely dependent on the network's

characteristics and the quality of the prior information.
These characteristics indicate that the algorithm makes the most significant changes to

the prior demand estimate (seed matrix) during the first number of iterations. Subsequent
alterations are of a progressively smaller magnitude. If a limited number of iterations can be
carried out, the greatest reduction in relative link flow error that can be achieved within this
number of iterations will be obtained.

The knowledge that the marginal reduction in link flow error always decreases, allows a
minimum marginal improvement threshold to be used as a stopping criterion. If the marginal
improvement of the current iteration is insufficient, then further iterations need not be carried
out as the marginal improvement of each subsequent iteration will be less than that obtained
in the current iteration.
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Figure 5-10: Rate of convergence of demands estimated by the LRE model for a
simple network having a single solution and multiple paths

Figure 5-11: Relative link flow error resulting from the application of the LRE
algorithm to a simple network having multiple path routes
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Figure 5-12: Marginal improvement in relative link flow error (ER) resulting from
the application of the LRE algorithm to a simple network having
multiple paths

5.6 Incorporation of Seed O-D Demand Reliability
The need for seed O-D demand reliability factors and their characteristics were discussed
earlier in Section 4-6. This section provides the modifications that are required to the LRE
model algorithm to incorporate seed reliability factors, and illustrates the impacts of these
factors using the same example network used in Section 4-6.

5.6.1 Modification to algorithm
To incorporate the seed demand reliability factor Rij into the LRE solution algorithm, the
equation in Step 4 of Table 5-4 is replaced with Equation [5-34].
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where: Tij
l = demand between i and j computed during the previous iteration

(vph)
Tij

l+1= demand between i and j computed during the current iteration (vph)
Rij = relative reliability of prior demand between i and j
Ra = relative reliability of flow observed on link a
Vr = estimated flow on link r (vph)

n = ∑ 










r r

r
ijr

V
PR2

5.6.2 Example application considering the relative reliability of
seed O-D demands

In order to examine the impact of seed reliability factors, consider the four-link network
originally presented in Chapter 4 and illustrated again in Figure 5-13. Assume the observed
flows are V'1 = 100 vph, V'2 = 100 vph, V'3 = 80 vph, and V'4 = 120 vph. Using this example
network, the same five scenarios examined in Chapter 4 are examined using the LRE model.
Table 5-6 provides a summary of the scenario configurations and the resulting estimated
demands.

Figure 5-13: Example four-link network used to examine the relative reliability of
seed O-D demands

Table 5-7: Scenario configurations and estimated demands used to illustrate the
impact of seed O-D demand reliability factors

Scenario Seed O-D
(vph)

Seed Reliability Estimated O-D
(vph)

tAC tAD tBC tBD RAC RAD RBC RBD TAC TAD TBC TBD
1 10 10 10 10 0 0 0 0 40.0 60.0 40.0 60.0
2 5 10 1 15 0 0 0 0 63.0 37.0 17.0 83.0
3a 5 10 1 15 1 0 0 0 5.0 95.0 75.0 25.0
3b 5 10 1 15 0 1 0 0 84.3 10.0 0.0 104.4
3c 5 10 1 15 0 0.2 0 0 64.9 35.1 15.1 84.9

For Scenario 1, when no prior information is known, the LRE model estimates a demand
that is the same as the maximum likelihood solution and the LSE model estimate. The
demand estimate for Scenario 2, when prior information of uniform reliability exists, is quite
different from the LSE model estimate determined in Section 4-6 (TAC = 42.3 vph, TAD =

B

A C

D

1 3

2 4



Chapter 5: Development of a Least Relative Error O-D Estimation Model 119

57.7 vph, TBC = 37.7 vph, TBD = 62.3 vph). Examining the role of prior information is
important in gaining an understanding of why this significant difference occurs.

The seed demand is used to provide information about both the relative and absolute
magnitude of the true demand. The absolute magnitude of the seed matrix is altered based on
the observed link flows. The results of Scenario 2 indicate that, though the seed matrix serves
as an initial estimate of the demand, no weight is placed on preserving either the magnitude
or the structure of this prior information. The LRE and the LSE models attempt to find an O-
D matrix that minimizes their respective error functions, regardless of how different this
demand might be from the seed matrix. This characteristic is also shared by the entropy and
information models examined in Chapter 3.

It is possible to formulate both the LRE and LSE models so that the error function
explicitly incorporates the degree to which the prior information has been altered (Equations
[5-22a] and [5-22b], respectively). Each formulation combines the error associated with
differences between the estimated and observed link flows, and the error associated with
differences between the estimated demand matrix and the seed matrix. The relative
weighting on these two components depends on the value of λ. When λ=1, then no weighting
is placed on the discrepancies between the estimated and seed matrix, and Equations [5-22a]
and [5-22b] revert to those developed earlier in this chapter and in Chapter 4. When λ=0,
then no weighting is placed on link flow errors, and the estimated demand will remain equal
to the prior matrix. The difficulty in applying Equations [5-22a] and [5-22b] is determining
an appropriate value for λ. In most instances, no knowledge of the relative reliability of the
prior matrix exists, while link flows are usually obtained through the use of loop detectors,
and as such are known to be relatively highly reliable. Without any explicit knowledge of the
reliability of the prior matrix, there is little reason to place any weight on the discrepancy
between the estimated and seed demands (λ=1), and the model formulations of Equations [5-
22a] and [5-22b] are not developed further.
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where: Tij = traffic demand between i and j (vph)
tij = prior traffic demand between i and j (vph)
Va = estimated flow on link a (vph)
V’a = observed flow on link a (vph)
λ = weighting placed on the link flow error

Returning to the examination of the LRE model results provided in Table 5-6, results for
Scenarios 3a and 3b illustrate the impact of tAC being known with certainty. In each case, the
estimated demand retains the value of the seed demand that is known with certainty. These
estimates are also the same as those estimated by the LSE model.
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Scenario 3c illustrates the impact of knowing that the prior estimate of one of the O-D
pairs is somewhat more reliable than the prior information for the other O-D pairs. The
estimate of TAD = 35.1 vph falls between 37.0 vph, the value obtained when the seed in not
known with any degree of confidence, and 10.0 vph, the value obtained when the seed
demand is known with certainty. Since the demand estimated when RAD = 0 is different from
that estimated by the LSE model (TAD = 57.7 vph), it would not be expected that TAD be the
same for both the LSE and LRE models when RAD = 0.2. However, it might be expected that
the impact of RAD = 0.2 relative to the estimate when RAD = 0 would be similar for both the
LSE and LRE models. This expectation can be tested by computing the Similarity Index
using the equation presented in Section 4-6, resulting in a Similarity Index of 6.9 for the LRE
model and 5.9 for the LSE model. In the absence of any context in which to interpret these
results, no conclusions can be made regarding the similarity of the two values. To provide
such context, Figure 5-20 illustrates the Similarity Index as a function of RAD for both the
LRE model and the LSE model. It is evident from this figure, that the Similarity Indices
follow the same general non-linear trend for both models.

Figure 5-15 which illustrates the intermediate O-D demand estimates for the first 30
iterations of the LRE model, indicates that the LRE model tends to over-correct the seed
demand for demands TAD and TBD in the first iteration. With a seed demand of 10 vph, the
model estimates TAD to be approximately 59 vph in the first iteration, when in fact, the final
estimate is only 37 vph.

Figure 5-16 provides a similar illustration for Scenario 3a in which tAC is assumed to be
completely reliable. The final estimate under these conditions retains this prior information
as TAD = 5. This prior information acts as an additional constraint on the feasible solution
space. The reduced solution space still contains at least one feasible solution as the estimated
O-D can be seen to exactly replicate the observed link flows. Like Figure 5-15 , Figure 5-16
illustrates the over-reaction of the algorithm in predicting intermediate demand values.
However, in Figure 5-16, though the over-compensation appears to be significantly greater
than in Figure 5-15, this trend occurs primarily due to the constraint on TAD. In the first
iteration, the algorithm computes correction factors under the assumption that all demands
are able to be corrected. Only when correction factors are applied, does the impact of Rij
become evident. Thus, it is not until iteration 2 that the model begins to account for the
additional constraint on TAD.

To prove that throughout these successive iterative modifications, the algorithm never
diverges, Figure 5-17 illustrates that the relative link flow error (ER) never increases.
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Figure 5-14: Similarity of estimated demand (TAD) to seed demand (tAD) as a
function of seed reliability factor (RAD)

Figure 5-15: Intermediate estimates of O-D demands for Scenario 2
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Figure 5-16: Intermediate estimates of O-D demands for Scenario 3a

Figure 5-17: Relative error (ER) of intermediate O-D demand estimates for Scenario
3a

It has been shown by way of a simple example that the LRE solution algorithm is well
behaved when Rij takes on a binary value. Of greater interest is the behaviour of the
algorithm when Rij assumes some fractional value less than 1.0. This is illustrated using the
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same four-link network, except that the reliability of the prior information for demand
between zones A and D is varied.

Figure 5-19 illustrates the intermediate estimates of TAD for five different levels of RAD.
As expected, when RAD = 1.0, TAD does not change from the seed value (TAD = 10). When
RAD = 0, all prior information is known to the same degree of certainty and, as indicated by
the results from Scenario 2 in Table 5-6, TAD = 37. If the prior estimate that tAD = 10 is not
completely reliable, but is known with a high level of confidence, (i.e. RAD = 0.75) then it is
expected that the final estimate of TAD will not be very different from the prior estimate
(tAD =10). For this example, when RAD = 0.75, TAD is estimated to be 24, which, though
different from the prior estimate of 10, is also quite different from 37, the value of TAD when
RAD =0.

In general, the relationship between Rij and the degree of similarity between Tij and tij is
not known a priori. The effect of Rij is a function of how quickly the other available O-D
demands can be altered from their prior estimate values to converge to a solution. If all other
O-D demands are constrained, then any value of Rij less than 1.0 results in the same final
solution. The only impact that Rij has under these conditions is to change the number of
iterations that are required to converge.

Figure 5-21 illustrates the final O-D estimates for each of the four possible demands, for
the complete range of values of RAD. As more confidence is placed on the prior estimate of
TAD, the closer the final estimate of TAD is to the prior estimate. In this example, for each
value of RAD, the four estimated demands represent a feasible solution which exactly
replicates the observed link flow.

Figure 5-18: Intermediate estimates of O-D demand TAD for different levels of seed
O-D demand reliability
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Figure 5-19: Final estimates of O-D demands for different levels of seed O-D
demand reliability (tAD)

5.7 Summary
In this chapter a model based on the assumption that the estimated demand should minimize
some function of the relative magnitude of the link flow errors has been developed. A
function that implements this assumption is the squared natural logarithm of the link flow
errors. It has been shown that this formulation is sensitive to the relative link flow error,
regardless of whether this error results from an under-estimation or an overestimation of the
flows. It is noted that this error function is continuous and differentiable. The solution that
minimizes the error function is one that satisfies a system of non-linear constraints. Unlike
the LSE formulation, this system of constraints does not lead to negative demand estimates.
Unfortunately, these non-linear constraints cannot be explicitly solved for the unknown O-D
demand, and hence requires an iterative solution.

The model formulation was applied to a number of simple network examples. These
networks illustrated the model's estimation capabilities in response to link flow continuity
and discontinuity, single and multiple solutions, single and multiple path routes, uniform and
non-uniform link flow reliability, and finally, uniform and non-uniform seed demand
reliability.

Since the system of constraints cannot be explicitly solved for the unknown O-D
demands, an explicit closed form algebraic solution to the formulated model is not available.
However, an iteration solution algorithm was proposed and demonstrated. The solutions
resulting from this algorithm satisfy the formulated model's constraints. Similar to the
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iterative solution method developed in Chapter 4, the algorithm successively modifies an
initial seed matrix based on the relative differences between observed and estimated link
flows. No mathematical proof is given that the algorithm converges, however, it is shown by
way of several example applications, that the solution algorithm is usually well behaved and,
for the given examples, does converge to a unique global optimum. Furthermore, it is shown
that when the seed matrix is uniform, and multiple solutions exist, the algorithm estimates an
O-D demand that closely approximates the most likely solution. Neither the formulation, nor
the solution algorithm are sensitive to the magnitude of the uniform seed matrix.

Several algorithm stopping criteria have been defined and examined. It was determined
that the most appropriate criteria, under most circumstances, is the marginal reduction in
relative link flow error.

Chapter 6 extends both the LSE and LRE static model formulations to permit the
estimation of dynamic demands. Alterations to the static formulations described in Chapter 4
and in this chapter are described. The abilities and performance characteristics of these
extended models are demonstrated through their application to two hypothetical networks.
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CHAPTER 6

Dynamic Extension of Static LSE and LRE
Models

6.1 Introduction
In Chapters 4 and 5, the development of two similar O-D estimation approaches, each based
on a different error function, was described. These models could be used to estimate a single
static demand that, when reapplied to the network, replicated the observed link flows as
closely as possible. In reality, O-D demands exhibit substantial peaking characteristics
throughout the day. It may be desirable therefore to extend the LSE and LRE models to
provide the capability for estimating a dynamic demand, which may vary both temporally
and spatially.

This chapter first demonstrates, using field data, the need for estimating time varying O-
D demands. Next, the additional complexities that are introduced when considering dynamic
demands are identified and discussed. Modifications to the LSE and LRE models, which are
required to address the identified complexities, are presented. These extensions are
illustrated using two small hypothetical networks for which dynamic demands are estimated.
Conclusions are made concerning the remaining limitations of the LSE and LRE models. To
illustrate further the abilities of the models, and to identify several practical difficulties that
are typically encountered when using actual field data, Chapter 7 describes the applications
of these dynamic models to a 35 km section of freeway in Toronto, Ontario.
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6.2 Establishing that a Need for Dynamic Demands
Exists

The need for dynamic demand estimation capabilities can be established using two separate,
but related arguments. The first argument which is presented, shows by way of field data,
that O-D demands typically exhibit significant temporal and spatial variations. Building on
the conclusions of this first debate, the second argues that the assumptions which are made in
the estimation of static demands are increasingly violated as the time dimension becomes
more disaggregated. These violations lead to inaccuracies within the estimated static
demands. It is shown that dynamic O-D demand estimation does not need to make these
same assumptions, and thus can be more accurate under these same conditions.

6.2.1 Spatial and temporal variations evident in field O-D
patterns

The analysis of the characteristics of actual O-D demand patterns can rarely be carried out as
the true demands are usually unknown. This is particularly true when this examination is to
be carried out within the context of traffic management and control, rather than urban
planning. In the latter case, the temporal and spatial variations that are of interest are those
that occur over much longer periods of time and over greater disntance than within the
context of traffic management and control. The obvious question then, is how can the
importance of dynamic demands be justified through the use of field data, when these data
are, in fact, not available?

A possible answer to this question lies in the analysis of available link count data to
identify temporal and spatial patterns that result from the underlying O-D demands. Without
knowing the true demands, it is possible to show, from observed link flows, that demands
that are active in the field, do exhibit such significant variations.

Consider Figure 6-1, which depicts typical 15 minute link flows by time of day, observed
on a three lane section of a major freeway in Toronto, Canada. These flows exhibit
significant variation over time of day. The minimum flow (500 vph) is observed at 4 AM,
while the maximum flow (5500 vph) is observed at approximately 7:30 AM. The greatest
rate of change in traffic flow occurs between 5:30 AM and 6:30 AM, when the traffic flow
increases rapidly from approximately 1000 vph to 5000 vph. Over this one hour period, there
exists an average rate of flow increase of 67 vph/minute. Clearly, O-D demands that do not
vary temporally would not be able to represent adequately these types of observed temporal
characteristics.

It might be argued that observed flows, that result from the combined interaction of many
O-D demands, do not possess significant correlation to the pattern of any single demand.
Since this may be true, two additional figures (Figures 6-2 and 6-3) are provided. These
figures illustrate total origin demand productions and total destination demand attractions,
respectively, observed at several on and off-ramps to Highway 401 in Toronto, Canada. The
flows illustrated in these figures reflect the effects of O-D matrix column and row totals,
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respectively, instead of the entire matrix. In each figure, data are provided for two locations
that are separated by approximately 6 km. These figures indicate that the flow characteristics
observed in the two locations exhibit significant fluctuations over time and that these
temporal variations can differ significantly for spatially separated locations. These data serve
to reinforce the notion that field O-D patterns exhibit significant temporal and spatial
variations.

It is possible to estimate a time series of independent static demands in order to capture
temporal variations. This approach is illustrated in Figure 6-4, in which a portion of the flows
depicted in Figure 6-1 are reproduced, along with a hypothetical time series of link flows
resulting from a time series of one hour static O-D demands. It is clear from this figure that,
though the one hour aggregate demands lead to flow discrepancies (particularly between 5
and 7 AM), the time series of static demands results in flows that can capture the more
general temporal trends in the observed flows. One might conclude then, that the extension
from a single demand estimate, to a time series of static demands, is sufficient to capture
observed temporal fluctuations. However, static demand estimation makes no distinction as
to when vehicles begin their trips, or when these trips arrive at their destinations. Vehicles
are assumed to depart from their origins at a constant rate throughout the entire period and
are assumed to complete their trips within the analysis period.

A time series of static demand provides a means of disaggregating the departure time, so
that temporal variations in departure time can be reflected. However, demands are still
assumed to complete their trips within each time slice. As the duration of the departure time
slice becomes shorter, it is possible to reflect more accurately temporal variations in O-D
departures. Conversely, as the departure time slice duration becomes shorter, the assumption
that all vehicles complete their trips within this time slice, becomes increasingly less valid. It
is the lack of validity of this assumption that deteriorates the accuracy of the time series of
estimated static demands. The next section will examine, by way of an example, the relative
impact of violating these static demand assumptions.



Chapter 6: Dynamic Extension of Static LSE and LRE Models 129

Figure 6-1: Typical observed aggregated 15 minute link volumes by time of day
(Source: Hellinga et al., 1994c)

Figure 6-2: Typical temporal and spatial variation in O-D demands as depicted by
total observed flow from specific origin zones
(FTMS detector data, Highway 401 eastbound, June 8, 1992)
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Figure 6-3: Typical temporal and spatial variation in O-D demands as depicted by
total observed flow to specific destination zones
(FTMS detector data, Highway 401 eastbound, June 8, 1992)

Figure 6-4: Approximating temporal variations in link flows through the use of a
time series of static O-D demands (Observed data from May 22/91)
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6.2.2 Effects of violating static estimation assumptions
To illustrate the potential effects of the static estimation assumption that all trips can be
completed within a single 10 minute time slice, consider the simple example network
illustrated in Figure 6-5, in which one demand between one O-D pair traverses five links.

It is assumed that time is discretized into time slices of equal duration. It is further
assumed that the true demand pattern consists of 10 vehicles which depart during the first 10
minute time slice, and no other vehicles depart prior to, or after, this time slice. If the travel
time on each link is assumed to be exactly 10 minutes, or one time slice, and loop detectors
are located at the end of each link, then the link counts that would be observed during each
time slice are presented in Table 6-1.

Figure 6-5: Example linear five-link network used to illustrate the relative accuracy
of a static demand, a time-series of static demands, and a dynamic
demand

Table 6-1: Link counts observed on example linear five-link network
Time Link
Slice 1 2 3 4 5

1 0 0 0 0 0
2 10 0 0 0 0
3 0 10 0 0 0
4 0 0 10 0 0
5 0 0 0 10 0
6 0 0 0 0 10

Total 10 10 10 10 10

The estimation of a static O-D, with the period of analysis encompassing all 6
observation time slices, would assume that a link count of 10 vehicles was observed on all
links during the 60 minute period of analysis and as such, the static O-D demand leading to
these observed link counts must be one with a departure rate equal to 10 vehicles/hour for the
entire 60 minute period.

The estimation of a time series of static demands would result in the problem of
estimating, for each departure time slice, except the first time slice, a demand based on four
link counts of zero, and one link count of 10 (the first time slice has no observed flows so the
demand must be zero). A reasonable estimate for the O-D that would depart the origin in
each time slice would be the mean flow of (4×0 + 1×10)/5 = 2 vehicles per 10 minute time
slice, or 12 vph.

The estimation of a dynamic demand explicitly recognizes the relationship between
departure time and the time to travel each link. The only solution that satisfies the observed
link count is one in which 10 vehicles depart during the first 10 minute time slice at a rate of

A B
1 2 3 4 5
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60 vph, and no vehicles depart at any other time. Each of the three estimation methods are
illustrated in Figure 6-6.

Figure 6-6: O-D estimation results as a function of the estimation process utilized

6.3 Extensions to LSE and LRE Static Models
The most obvious extension required to the static models, is the inclusion of some departure
time index. In order to estimate dynamic demands, there must exist some means of tracking
when demands depart their origins. Following from this need is the need for differentiating
between link flows observed at different times. This section will first examine how the static
versions of the LSE and LRE models can be expanded to accommodate both of these time
based indices.

Since the dynamic model formulations require the addition of a number of indices to the
previously defined variables, all relevant variables are defined again below:
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i = origin zone
j = destination zone
a = link number
o = time slice in which a given link flow is observed
d = time slice during which a given traffic demand departs an origin
Vao = estimated flow on link a during slice o
V'ao = observed flow on link a during slice o
Tijd = demand between origin i, destination j, departing at time d

ao
ijdP = probability of demand departing origin i at time d, en route to

destination j, utilizing link a during time slice o
Rijd = reliability of seed demand for origin i, destination j, time slice d
Rao = link flow reliability factor for link a, during time slice o

6.3.1 Formulation of dynamic LSE and LRE models
The derivation of the dynamic LSE model formulation is commenced with the definition of
the error function. As presented in Chapter 4, the LSE model's error function is the sum of
the squared link flow differences. For the dynamic case, this function is extended to consider
a time series of observed and estimated link flows by summing across an index for both links
and time slices.

( )∑∑ ′−=
o a

aoao VVE 2 [6-1]

Having defined the objective function for the dynamic LSE model, the derivation
presented in Chapter 4 is followed to determine the set of equations that define the minimum
of this objective function. The partial derivatives of the error function with respect to each
unknown demand Tijd are expressed by Equation [6-2a]. Equation [6-2b] provides the
expression for the estimated link flows, while Equation [6-2c] provides the derivative of the
estimated flow with respect with the unknown demand Tijd. Substituting Equations [6-2b]
and [6-2c] into Equation [6-2a] produces Equation [6-2d], the system of equations that
results in the minimum E.
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An iterative algorithm can be used to solve Equation [6-2d]. Equations [6-3a], [6-3b],
and [6-3c] define this algorithm.
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It can be similarly shown that the dynamic extensions of the static LRE model lead to an
iterative algorithm as defined in Equations [6-4a], [6-4b], and [6-4c].
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The LSE and LRE dynamic models have been incorporated into a computer model called
QUEENSOD. This model is used to carry out the estimation of dynamic and static demands
for the two example applications described later in this chapter. A user's guide, describing
the necessary data inputs into the model and the available outputs from the model, appears in
Appendix A.

6.3.2 Characteristics of dynamic estimation
The first characteristic of the dynamic LSE and LRE formulation to note is the existence of a
five-dimensional link use probability matrix ( ro

ijdP ). As a practical consideration, it is
worthwhile to quantify the computer memory requirements that this matrix imposes for a
medium to large sized network.

Consider a network having 50 origin zones, 50 destination zones, and 2000 links.
Assume that demands are to be estimated for 16 time slices and that flows are observed for
20 of such time slices. Based on these network characteristics, the link use probability matrix
would contain 50 × 50 × 16 × 2000 × 20 = 1.6 × 109 cells. Since the magnitude of the link
use probability may be any real value between 0 and 1.0, the matrix must be stored as a real
variable, which requires 4 bytes per value. For the above network, the link use probability
matrix requires 1530 megabytes of memory. Clearly, this requirement presents a significant
practical problem, and unless it is circumvented, limits the usefulness of the dynamic LSE
and LRE models in terms of most practical applications.

Two approaches might be taken to address the memory requirement constraints of storing
the entire link use probability matrix. First, it should be recognized that the matrix is very
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sparse, since flows resulting from a demand departing at a given time, are only observed on
very few links during a given time slice. The sparseness of the matrix may be used to
advantage as the cells containing zeros might be collapsed, reducing the overall dimensions
of the matrix.

A second approach, relies on the fact that the link use probability matrix can be
generated from a time series of route choice trees, and a time series of link travel times.
These trees require much less storage space as their dimensions are (links × destinations ×
departure time slices). For the previous sample network scenario, the memory requirement of
a route tree is only 2000 × 50 × 16 × 4 bytes ≈ 6 megabytes. The link use probabilities can,
therefore, be generated from the stored trees and link travel times each time they are
required. This latter method has been adopted within the QUEENSOD model for overcoming
the memory constraint of storing the entire link use probability matrix.

6.3.3 Generating link use probabilities from known route trees
and link travel times

Previously, it has been assumed that the link use probability matrix has been exogeneously
computed and as such, its calculation required no further discussion. Now, however, the link
use probability matrix is computed from stored routes and link travel times, both of which
are assumed known. Since the link use probability matrix is computed within the proposed
models, these calculations need to be presented first. It is prudent, therefore, to describe first
the format and nature of the input data; route choice trees and link travel times.

Route choice trees represent, in a compact format, the sequence of links that must be
traversed in order to travel from any current location, to any valid destination zone. These
trees provide spatial information in terms of the links that are to be utilized, but they do not
contain any temporal information indicating how long it will take to traverse any link. Thus,
route trees alone are not sufficient to produce a link use probability matrix as there is no way
to compute when a demand will use a particular link, only that it will, or will not use a link
at some time.

Route choice trees may vary temporally, so that later departures choose different routes
from earlier departures. Trees may also be multipath, so that the total demand from a specific
origin to a specific destination, is apportioned to more than one route.

Temporal information is obtained from sources of link travel times. If a time series of
link travel times are known, it is possible, given the route tree and departure time, to
determine the demand that will be observed on any link. Travel times are assumed to be
determined exogeneously from the O-D estimation methodology presented in this thesis. The
travel times may be observed directly from probe vehicles having the communication
capability of transmitting link travel time information to a central computer, and/or they may
be estimated from spot detector speeds, traffic flows and signal plans. Regardless of the data
source, the travel time data must represent the total time required for a vehicle to traverse the
link during that time interval. This total must include time spent traveling and time spent in a
queue due to congestion or a traffic signal. In this way, congestion effects on travel time are
accounted for.
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As illustrated in Figure 6-7, time is discretized into time slices of uniform duration for
both the departure of demands and the observation of flows. In this figure, the travel time on
each link is assumed to be equal to the duration of one time slice, though in general, this
need not be the case, nor is this typically encountered with actual field data. Demand is also
assumed to depart from its origin with uniform headway throughout the departure time slice.
In Figure 6-7, a platoon of traffic demand departs at a uniform rate during the first departure
time slice (time 0 to time t1). As platoon dispersion is not considered, the band-width of the
platoon remains constant. It is also assumed that loop detectors are located at the end of each
link, so that vehicles are not observed until they have actually traversed the entire link.

Figure 6-7 depicts the uncommon situation in which all link travel times are
conveniently, not only equal to each other, but they are also equal to the duration of the
observation time slice. This non-typical situation results in the entire platoon crossing the
detector at the end of each individual link during a single time slice. In practice, the situation
is rarely so convenient.

Consider therefore, the linear four-link network depicted in Figure 6-8, in which the four
links are not all of equal length, and travel times on each link are not equal to each other. The
depicted proportions of demand observed on each link during each time slice are determined
by computing the arrival time of the front of the platoon at each detector station. Since
platoon dispersion is not modeled, the tail of the platoon always arrives one departure time
slice duration after the head of the platoon. If the head and tail of the platoon arrive during
two different time slices, then the demand is apportioned to each time slice in proportion to
the fraction of the demand arriving in each time slice. This method also permits link travel
times to change temporally, as the travel time used to compute the platoon's arrival is the one
that is in effect during the time slice that the platoon enters the link.

Figure 6-7: Discretized representation of demand propagation over time and space
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Figure 6-8: Computation of observed link flows based on demand departure time
and link travel times

6.3.4 Identifying extraneous link flows
One difficulty that arises, when considering a time series of link flows, is identifying those
flows that result from demands departing their origins prior to the analysis time period.
Clearly, flows that do not result from demands being estimated, should not be considered
within the analysis, as they will bias the results. This problem is best illustrated by way of a
simple example. Consider Figure 6-9, which depicts the time-space path of two demands.
The first demand path, denoted A, results from demand departing the origin during time slice
t. The second demand path, B, represents demand departing during time slice t+1. In this
figure, the travel time on each link is assumed to be one time slice, though in general, this
need not be the case. If demands are to be estimated for time slices t+1 to t+5, then any
demands departing prior to time slice t+1, are not considered. Accordingly, flows resulting
from demands departing prior to time slice t+1, must also be ignored. Some systematic
method is therefore required to determine if an observed flow results from a demand that
departed prior to the start of the analysis period.

In this simple example, it is evident that only flows in demand path B should be
considered, and those in path A result from demands departing prior to the start of the
analysis period. For networks having more than one O-D demand, the determination of
irrelevant, or extraneous flows is somewhat more involved. Consider for example, the simple
network illustrated in Figure 6-10. One may wish to define a method for determining if flows
observed on link A, are extraneous. Since the network is not linear, and many demands
contribute to the flow on link A, the problem is more complex than that illustrated in Figure
6-9. One needs to first determine the minimum time required for the demand departing each
origin to reach link A. Any flows observed on link A prior to this minimum time must be
extraneous flows. Unfortunately, as illustrated in Figure 6-11, the flow on link A is likely to
result from a number of demands, all departing at different times. A flow that is not
completely extraneous, may result in part from demands departing prior to the start of the
analysis period, but since the true demands are unknown, it is not possible to determine a
priori, the proportion of the flow that results from demands departing prior to the analysis
period.
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Figure 6-9: Illustration of occurrence of flows that do not result from demands
considered within analysis period

Figure 6-10: Illustration of a more complex situation for the determination of
extraneous link flows
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Figure 6-11: Illustration of the occurrence of partially extraneous flows

6.4 Application of Dynamic Models to a Small
Hypothetical Network

6.4.1 Network characteristics and scenario descriptions
The characteristics and performance of the dynamic LSE and LRE models are illustrated
using the network in Figure 6-12. The network is composed of five links and six nodes, of
which two are origins (nodes A and B), and two are destinations (nodes C and D). It is
assumed that links 1, 2, 4, and 5, have a fixed travel time of five minutes, while the travel
time on link 3 is exactly 10 minutes. Four O-D demands (TAC, TAD, TBC, and TBD) are active
during each of three consecutive five minute departure time slices. The magnitude of these
demands are provided in Table 6-2. The traffic flows resulting from these O-D demands, are
observed during five consecutive five minute observation time slices. It is assumed that these
flows are measured exactly, such that node and path flow continuity exist. These observed
flows are also provided in Table 6-2. It should be noted that as there exists only a single path
from each origin to each destination zone, the problem of determining appropriate routes and
route weights, is not encountered in this example.

Figure 6-12: Example five-link network used to illustrate the performance
characteristics of the dynamic LSE and LRE models
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Table 6-2: Actual network O-D demands and observed link flows (vph)
Departure Time Slice Observation Time Slice

O-D 1 2 3 Link 1 2 3 4 5
A-B 50 85 60 1 0 175 285 235 0
A-C 125 200 175 2 0 125 250 200 0
B-C 75 100 100 3 0 0 300 535 435
B-D 50 150 100 4 0 0 0 125 185

5 0 0 0 175 350

Table 6-3: Description of scenarios evaluated to illustrate the dynamic estimation
abilities of the LSE and the LRE models

Scenario Seed demand Estimation Method Number of Iterations
1a Actual Dynamic 60
1b Uniform Dynamic 60
2a Actual Static 0
2b Actual Static 20

Table 6-3 provides the scenario configurations that are examined on the test network.
Scenario 1a provides a reality check on the estimation model, since the actual demand is
provided to the model as the seed. If the model attempts to alter the seed, or indicates that
any link flow error exists, then an error is likely to exist in the model formulation or
implementation. Scenario 1b represents the situation likely to be encountered in the field, as
the uniform seed implies no prior knowledge of the true demand. Scenarios 2a and 2b
provide an opportunity to examine the appropriateness of approximating dynamic demands
with a time series of static demands.

6.4.2 Measures for comparison
In order to facilitate the quantitative evaluation of the LSE and LRE dynamic models, several
Measures Of Performance (MOP) are defined. The first MOP is average link flow error,
represented as a proportion of the observed link flow ( nE  for the LSE model, and n

RE  for the
LRE model). When the estimated link flows are equal to the observed flows, then, for the
LSE model, this value must be equal to zero. For the LRE model, the normalized link flow
error results from a natural logarithm transformed ratio of the observed and estimated flows.
As a result, when the estimated flows are equal to the observed flows, this measure equals
1.0 instead of 0.0.

The second MOP is the sample correlation coefficient computed between the estimated
and observed flows (rv), and between the estimated and true O-D demand (rod). When the
two quantities being compared are equal, the correlation coefficient should equal 1.0. The
correlation coefficient provides a quantitative measure of the degree of linear association
between the two quantities. As the values of the two quantities become less associated, the
magnitude of the correlation coefficient also decreases. The correlation coefficient may take
on values from -1.0 to +1.0, where negative values indicate that as one of the two quantities
increases, the other quantity decreases. The correlation coefficient is computed using
Equation 6-5.
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where: r = sample correlation coefficient (0.0 ≤ r ≤ 1.0)
x,y = quantities being correlated
Sx = sample standard deviation of data series x
Sy = sample standard deviation of data series y
n = number of observations compared

The last MOP is the root-mean-square error computed between the estimated and true O-
D demand. When the estimated demand is equal to the true demand, then the RMS error is
zero. As the matrices become increasingly less similar, the RMS error increases. The RMS
error is computed using Equation 6-6.
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It is of interest to examine the relative sensitivity of the normalized link flow error and
the correlation coefficient to discrepancies between the observed and estimated link flows.
To illustrate such sensitivity, consider 10 links, on which flows of 1, 2, 3, ..., and 10 are
observed, respectively. Now consider that the estimated flows for all links, except link 6, are
equal to the observed flows. For ten different situations, the flow on link 6 is assumed to be
1, 2, 3, ... and 10, respectively. The associated relative link flow error and the correlation
coefficient for each of these ten situations are presented in Figure 6-13. When the estimated
flow on link 6 is equal to 6, the observed flow, then the normalized link flow error is equal to
0.0 and the correlation coefficient is equal to 1.0. As the flow estimate for link 6 becomes
increasingly different from the observed flow, the normalized link error increases and the
correlation coefficient decreases. It is of interest to note that the magnitude of the coefficient
of correlation is less sensitive to the presence of link flow error, than is the normalized link
flow error. As such, the measure of normalized link flow error is considered to be a better
indicator for comparing different estimation scenarios, than is the correlation coefficient.
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Figure 6-13: Illustration of the sensitivity of the normalized link flow error (E n ) and
the correlation coefficient to the magnitude of the link flow error

6.4.3 Analysis of model results
A number of conclusions can be drawn based on the O-D estimation results presented in
Table 6-4. First, the results for Scenario 1a, indicate that both the LSE and LRE models
correctly recognize that the estimated and observed link flows are identical. The correlations
between estimated and observed flows, and observed and estimated demands, are perfect.
Since the seed demand is the actual demand, the models do not alter the seed demand, and
the resulting demand estimate is identical to the true demand.

For Scenario 1b, a uniform seed demand is provided to each estimation model. Both the
LSE and LRE models predict a final O-D demand that exactly replicates the observed link
flows. However, neither model predicted a demand that is identical to the true demand, nor is
the demand estimated by the LSE model identical to the demand estimated by the LRE
model. Since the link flow resulting from each estimated demand replicates exactly the
observed link flows for each case, it is clear that multiple feasible solutions exist and the
measure of how similar the estimated demand is to the actual demand (correlation
coefficient) does not provide a meaningful absolute measure. As has been demonstrated
earlier, when multiple solutions exist, both the LSE and LRE models choose the solution that
approximates the most likely solution. The O-D correlation coefficient provides a measure of
how similar this most likely feasible demand is to the true demand. However, as this true
demand was arbitrarily chosen, many correlation coefficient values could have been achieved
by selecting the appropriate feasible demand as the true demand. It is worthwhile to note,
however, that both models estimate demands that have approximately the same degree of
similarity to the true matrix.
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The results for Scenario 2a indicate that the best time series of static seed demands does
not result in a time series of flows that replicates those flows that were observed. The static
estimation model assumes that all trips are completed within each departure time slice. Thus,
even though, the true demand is provided to the model, the estimated link flows that result
are quite different from those observed. Even when the algorithm is permitted to alter the
seed demand (Scenario 2b), it is not possible to estimate a time series of static demands that
results in link flows that exactly replicate the observed link flows.

Table 6-4: Results from the application of the dynamic LSE and LRE models to a
simple five-link network

Scenario Link Flow Correlation Coefficient RMS O-D
Error Flow O-D

LSE Model E n

1a 0.0000 1.0000 1.0000 0.00
1b 0.0000 1.0000 0.7783 29.11
2a 1.5166 -0.3872 N.A. 114.63

2b (1) 1.4805 -0.0349 0.4400 67.57
LRE Model ER

n

1a 1.0000 1.0000 1.0000 0.00
1b 1.0000 1.0000 0.8008 27.79
2a 15.2466 -0.3872 N.A. 114.63

2b (2) 8.4994 0.0886 0.1594 110.34
(1) Convergence tolerance met after 16 iterations
(2) Convergence tolerance met after 7 iterations

6.5 Limitations of Dynamic Models
The previous section described the application of both the LSE and LRE dynamic models to
a simple example network. However, a number of limitations still exist with the current
model formulations. Two limitations, which are neither unique to dynamic models, nor to the
formulations proposed within this thesis, are worth noting.

First, the estimation of dynamic demands using either the LSE or the LRE model still
requires that the routes that drivers utilize are known a priori and that the associated weights
for these routes are also known. Furthermore, dynamic estimation requires that the time
needed for vehicles to traverse each link in the network is known.

Second, as illustrated in Figure 6-14, it is not possible, with the current model
formulations, to estimate demands that exceed the capacity of the network. In fact, it is not
possible to directly observe link flows that exceed network capacity. The only evidence that
excess demand exists, is the congestion at the bottleneck. Unfortunately, it is usually not
possible to determine the actual demand pattern that is in excess of the network capacity.
This may initially not appear to be a problem, until one considers evaluating a number of
alternative congestion reduction scenarios. The effectiveness of each scenario may depend
very much on the characteristics of the true demand pattern, and not on the clipped pattern
that is estimated.
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Figure 6-14: Illustration of possible discrepancies between true demand profile and
observed capacity constrained flows

6.6 Application of Dynamic Models to a Larger
Hypothetical Network

The previous applications of the LSE and LRE dynamic models were limited to a simple
five-link network. This section examine a somewhat more extensive network, in which
neither node nor flow continuity is expected to exist. Since the network, that is examined in
this section, is larger than previous examples, the generation of observed link flows and
appropriate routes is no longer a trivial task. To facilitate these computations, the network
traffic simulation model INTEGRATION is utilized. The process of first generating appropriate
observed link flows, and subsequently estimating a time varying O-D demand, is illustrated
in Figure 6-15.

Figure 6-15: Process used to generate an appropriate time-series of observed link
flows and routes using the INTEGRATION simulation model
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6.6.1 Network characteristics
The physical characteristics of the network were assigned such that the network consisted of
an integrated freeway and parallel arterial configuration. The network, illustrated in Figure 6-
16, consists of 7 origin/destination zones, 9 additional nodes and 40 uni-directional links.

An arbitrary time-varying demand, as presented in Table 6-5, was created. This demand
was considered to be the true demand, and from it the observed link flows were generated.
To facilitate the generation of these observed flows, the true demand and the network
characteristics were provided to the network traffic simulation model INTEGRATION. The
INTEGRATION model was then used to provide estimates of appropriate link flows and routes
resulting from the application of the true demand on the network. A brief description of the
INTEGRATION model's relevant characteristics is provided in the next section.

The input data files required to carry out the O-D estimation using the QUEENSOD model
for each of the scenarios described in the following section, are provided in Appendix B.

Figure 6-16: Hypothetical network used to illustrate dynamic estimation abilities of
the LSE and LRE models

Table 6-5: Actual time varying demand used to determine observed flows (vph)
Destination Zone

Origin Departure Time Slice 1 Departure Time Slice 2
Zone 1 2 3 4 5 6 1 2 3 4 5 6

1 150 200 50 25 30 125 100 25 125 50
2 100 100 200 100 50 100 75 200 50 50
3 125 75 650 125 75 125 75 850 75 75
4 25 275 750 150 125 25 125 1150 50 25
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6.6.2 Description of the INTEGRATION model
During the past three decades a number of different simulation models have been developed
and applied to freeway and arterial networks. To circumvent some of the limitations of these
earlier models, the INTEGRATION model was developed. This model, along with input data
requirements and model outputs, are briefly described below. Detailed model descriptions,
input requirements and other applications of the model can be found in the literature (Van
Aerde, 1994; Rakha et al., 1989; Van Aerde and Yagar, 1988; Van Aerde, 1985; Hellinga
and Van Aerde, 1993).

The INTEGRATION model is a microscopic routing-oriented simulation model of integrated
freeway and surface street networks. The model is microscopic in the sense that individual
vehicle movements through the network are traced to monitor and control the unique
behavior of vehicles that belong to a certain sub-population. For example, each vehicle's
identity is retained, as it travels through the network, in order to route each such vehicle
based on its unique trip origin, destination, departure time and vehicle type. On each link, the
model determines each vehicle's speed based on the available headway.

The model is routing-based in that only a vehicle's trip origin, destination and departure
times are specified external to the model, leaving the actual trip path and the arrival times at
each link along the path to be derived within the simulation based on the modeled
interactions with any other vehicles. The actual path taken by a vehicle depends on the
vehicle type, which in turn will control what routing objective a given vehicle will attempt to
achieve. For example, vehicles belonging to one group will attempt to respond in real-time to
any on-line traffic information that may be available, while vehicles belonging to another
group will simply consider average day-to-day traffic conditions, without concern for any
characteristics that are unique to the given day. As a result, different vehicle (driver) type
mixes (i.e., commuter vs. tourist, or guided vs. non-guided vehicles) can be considered
concurrently. In each case, the actual arrival time at the start of a link, along the path that is
finally taken will be a function of any delays that may have been incurred along the links
taken so far.

6.6.3 Scenarios being examined
Having generated a time-series of link flows, routes, and route weights, and knowing the true
demand, a number of O-D estimation scenarios can be undertaken. Table 6-6 provides a
description of the scenarios that are examined using this network. Scenario 1a acts as a base
case condition, as the true demand is provided to the model. Since zero iterations are carried
out, the true demand is simply evaluated in terms of the observed link flows. As neither node,
nor flow continuity are guaranteed to exist, it is expected that even the true demand will not
exactly replicate the observed link flows. However, the knowledge of the magnitude of this
intrinsic error provides an opportunity to interpret more accurately the results from the
remaining scenarios.

Scenario 1b also assumes that the true demand is known a priori. However, in this case,
the models are permitted to modify this prior demand in order to reduce the associated link
flow error. Scenario 2a examines the models' estimation capabilities when no prior
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information is provided. Scenario 2b examines the models' capabilities when it is assumed
that, the O-D cells in the true matrix which have no zero demand are known, and are
explicitly identified to the model.

Table 6-6: Description of scenarios evaluated to illustrate the dynamic estimation
abilities of LSE and LRE models

Scenario Seed demand Iterations
1a Actual 0
1b Actual 100
2a Uniform

all feasible O-D's considered
100

2b Uniform
all zero demands in actual O-D considered as

structurally zero in seed

100

6.6.4 Analysis of model results
Each of the four scenarios were analyzed using both the dynamic LSE and LRE models. For
each model's application, four measures of performance have been provided in Table 6-7.

The analysis begins by examining the results for Scenario 1, in which the true demand is
assumed as the seed demand. No attempt is made to alter the seed matrix. The observed link
flows are known without error, the routes and route weights are known exactly, and the true
demand is also known, yet the results in Table 6-7 indicate that the resulting link flow error
is not equal to zero. The obvious question then, is, "Why do the results indicate a non-zero
link flow error?".

The answer to this question lies in the manner in which the observe link flows were
obtained. The INTEGRATION model is a microscopic simulation model that reflects the
movements of individual vehicles within a traffic network. For this application, the O-D
demands depart their origins with uniform headways, but each vehicle's speed, and thus
travel time on a link, is a function of the link's speed-flow relationship and the available
headway. Link flows and travel times are output at five minute intervals, and it is these
values that are used as observed flows and travel times. However, these values represent the
average flow experienced on the link during the previous time slice, while the travel time is
the travel time that is experienced at that instant in time. This travel time is not necessarily
the travel time experienced by all of the vehicles that traveled the link in the previous time
slice. Vehicles that traversed the link just prior to or just after the time when the link travel
time was recorded, are likely to have experienced travel times that were somewhat longer or
shorter than the recorded time. There exists some variation in the travel times experienced by
the vehicles. Thus, the assignment of the true demand to the network using the observed
routes and reported link travel times does not exactly replicate the observed flows.

The link flow errors that result from the assignment of the true demand are rather small.
Figure 6-17 illustrates the correlation between the observed flows and those estimated by the
dynamic LRE model for Scenario 1a. The scatter about the line of perfect correlation is
small, with no obvious systematic bias. In fact, the correlation coefficient is equal to 0.9984
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for both the LSE and LRE models. As expected, since no modifications are made to the seed
matrix, both models provide the same estimated link flows.

In Scenario 1b, we determine whether the LSE or LRE models can reduce the link flow
error found in Scenario 1a. If the error can be reduced, it is of interest to determine how
different from the true demand matrix, the estimated O-D demands must become. The results
in Table 6-7 indicate that both models are able to reduce the link flow error when this error is
measured by the normalized link flow error. When measured by the correlation coefficient,
the LSE model reduces the error, but the LRE model slightly increases the error. This
apparent discrepancy occurs because the LRE model reduces the relative error, not the
absolute error which is the basis upon which the correlation coefficient is determined.

Of greater interest is the change in the error associated with the estimated O-D demand.
In Scenario 1a, the seed demand was not altered, so the estimated demand was exactly equal
to the true demand. In Scenario 1b, both models modified the seed matrix in order to reduce
the link flow errors, but in doing so, increased the O-D error. This error acts as a benchmark
against which the results from Scenario 2 can be compared. One would expect that the
minimum RMS O-D error that could be achieved, regardless of the quality of the prior
information, would be approximately equal to 34 for the LSE model and 48 for the LRE
model. If, as in Scenario 2, O-D demands are estimated without the benefit of high quality
prior information, then any resulting RMS O-D errors in excess of these values could be
assumed to result from the model's inability to determine the true O-D demand pattern
without high quality prior information.

In Scenario 2a, it is assumed that no prior information is available. After 100 iterations,
the LSE model's O-D estimate results in an average link flow error that is approximately
12% of the average observed flow. The associated RMS O-D error is almost twice that found
in Scenario 1b. Clearly, the lack of prior information adversely affects the model's ability to
reproduce the true demand. However, the magnitude of the link flow error indicates that
further iterations would likely improve this estimate.

After 100 iterations of the LRE model, the estimated demand has a larger associated link
flow error than was found in either Scenario 1a or 1b, however, the resulting RMS O-D error
is slightly less than that determined in Scenario 1b. Clearly, despite the lack of prior
information, the LRE model is able, in this example, to estimate an O-D demand that is as
similar to the true demand as that estimated when very high quality prior information is
available.

In Scenario 2b, it is assumed that it is known a priori which O-D matrix cells contain
zeros. However, no knowledge exists regarding the relative magnitude of the non-zero cells.
This prior knowledge reduces the number of unknowns and allows both models to reduce the
link flow error more quickly. As illustrated in Table 6-7, after 100 iterations the normalized
link flow errors for both the LSE and LRE models are lower than those found in Scenario 2a.
The associated RMS O-D error is comparable to that determined in Scenario 1b. Thus,
despite the little available prior information, both models were able to estimate O-D demands
having the same level of error as when the true O-D demand was used as the prior
information.
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Figure 6-18 illustrates, for each iteration, the LRE model estimates of four selected O-D
pairs. It can be seen that initial modifications to the uniform seed are large, but become
successively smaller.

Figure 6-19 illustrates the normalized link flow error resulting from each iteration of the
LRE model for Scenarios 1b, 2a, and 2b. Scenario 2a, in which no previous information is
available, has the largest initial, and final, link flow error. Scenario 2b, in which some prior
information is available, has an initial error that is larger than that experienced in Scenario
1b. However, this error is quickly reduced so that by the sixth iteration, the normalized link
flow error for Scenario 2b is approximately equal to that of Scenario 1b. Figure 6-20
illustrates the same trends for the LSE model results, except that the LSE model requires
more iterations to respond.

Table 6-7: LSE and LRE dynamic model results for a hypothetical integrated
freeway/arterial network

Scenario Link Flow Correlation Coefficient RMS O-D
Error Flow O-D

LSE Model E n

1a 0.0909 0.9984 1.0000 0.00
1b 0.0516 0.9994 0.9942 34.28
2a 0.1162 0.9972 0.9675 62.22
2b 0.0546 0.9994 0.9928 38.81

LRE Model ER
n

1a 1.2808 0.9984 1.0000 0.00
1b 1.2207 0.9983 0.9909 47.94
2a 1.4676 0.9983 0.9910 47.66
2b 1.2207 0.9983 0.9909 47.75
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Figure 6-17: Observed link flows and flows estimated by the dynamic LRE model
from the true dynamic demand (Scenario 1a)

Figure 6-18: Selected O-D demands estimated by the dynamic LRE model during
each iteration (Scenario 2b)
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Figure 6-19: Normalized link flow error ( n
RE  ) resulting from the LRE model as a

function of the iteration number

Figure 6-20: Normalized link flow error ( nE  ) resulting from the LSE model as a
function of the iteration number
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6.7 Summary
Chapter 6 has shown that there exists a need for the estimation of dynamic, as opposed to,
static O-D demands. This need was demonstrated by illustrating, using field data, that
significant temporal and spatial variations exist in observed link flows as well as in total
origin productions and total destination attractions.

Next, it was demonstrated that static demands become increasingly less accurate as the
duration of the time slice, for which the demands are in effect, becomes shorter. The
accuracy of static O-D demand estimation, of the estimation of a time series of static
demands, and of dynamic estimation was illustrated using a simple linear network. It was
shown that static O-D estimation assumes that all trips are completed during their departure
time slice.

Having established the need for dynamic O-D estimation, dynamic extensions to the
static LSE and LRE models were formulated. Revised iterative solution algorithms were also
developed. The dynamic extension of the static models required the inclusion of two
additional indices: O-D departure time, d, and link flow observation time, o. The inclusion of
these two additional indices caused the link flow probability matrix to become five
dimensional. It was illustrated that the computer memory storage requirements for this
matrix become excessive, even for a medium sized network. A practical alternative is to
store the route trees, tree weights, and link travel times, and compute the associated link use
probabilities when necessary.

A further practical difficulty was found to exist in the identification of extraneous flows –
those flows that result in part or in whole, from trips that depart prior to the analysis period.
A means of identifying wholly extraneous flows was proposed.

The dynamic LSE and LRE models were applied to two hypothetical networks. The
superior abilities of dynamic O-D demands to capture temporal variations were illustrated.
Several quantities that reflected the performance of the estimation models were defined. It
was found that the LRE model tended to converge more quickly than the LSE model for
these examples. The link flow errors and the O-D errors associated with the final model
estimates were comparable.
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CHAPTER 7

ESTIMATING O-D DEMANDS FOR A
FREEWAY CORRIDOR IN TORONTO,
CANADA

7.1 Introduction
The previous chapters have described the development and formulation of two dynamic O-D
demand estimation models. The performance characteristics of these models have been
mathematically examined and illustrated using several small hypothetical networks. Though
these networks have each served to illustrate various specific characteristics of the models,
they are hypothetical with known characteristics, and many of the difficulties encountered in
field applications have not been illustrated. This chapter describes the derivation of time
varying O-D demands from field data for a 35-kilometre section of Highway 401, a multi-
lane freeway in Toronto, Canada.

Unlike the hypothetical examples examined previously, neither the true demands nor the
routes or route weights are known a priori. Furthermore, since the link flow data contain
inconsistencies, neither node nor path flow continuity exist. As these conditions are likely to
be the norm rather than the exception for field applications, it is desirable to gain an
understanding of how well the LSE and LRE models perform under these challenging
conditions.

This chapter is organized as follows. The 35 km section of Highway 401 that is analyzed,
is described first in Section 7.1.1. The FTMS that is operating on a portion of this section,
and from which the necessary data are obtained, is then described next in Section 7.1.2. The
process of extracting the data necessary for the estimation of time varying demands from the
characteristics of the physical network and the available FTMS data is subsequently
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discussed. The extraction process involves abstracting the physical network into a series of
nodes and directional links, determining a time series of observed link flows and link travel
times, and identifying a time series of routes and route weights. Each of these three
components is examined and described in turn in Section 7.2. The demands estimated by the
LSE and LRE models are evaluated by examining the aggregate link flow errors and by
comparing estimated and observed flows for two individual links. Demand estimates are also
compared to observed origin and destination zone productions and attractions. Lastly,
conclusions are made about the performance of the dynamic LSE and LRE models.

7.1.1 Description of Highway 401
The freeway site studied consists of a 35-km section of Highway 401 in Metropolitan
Toronto, Canada (Figure 7-1). Carrying an average annual daily traffic (AADT) of
approximately 320 000 vehicles and having a cross-section consisting of up to 16 directional
lanes, this section of Highway 401 is the most heavily traveled section of freeway within
Canada and ranks among the busiest in the world. It attracts this volume of traffic as it is a
major commuter corridor for east-west travel within Metro Toronto, and as it is the primary
route for through traffic. Unfortunately, the very success of the highway has in the recent past
also become its greatest liability, as the continuing growth in traffic demand has pushed this
section of freeway far beyond its original design capacity. This results in recurring
congestion during large portions of the a.m. and p.m. commuting periods. Non-recurring
congestion is also common place throughout these same peak periods, causing considerable
efficiency and safety repercussions for both private automobiles and commercial vehicles.

One unique feature of this freeway is that each direction of travel is provided with an
express and collector facility. The collector facility provides primary access from and to the
major arterial roads and other freeways connecting to Highway 401. The express facility has
limited access to and from the collector facility via high speed transfer roadways. The system
of separated facilities also provides drivers with a number of binary routing choices. At the
time of this study, the system of express/collector facilities extended from Neilson Road in
the east to Islington Avenue in the west.

Figure 7-1: Location of Highway 401 study site
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7.1.2 Description of the freeway traffic management system
Early in 1991, the Ontario Ministry of Transportation (MTO) brought on-line, on Highway
401 through Toronto, a freeway traffic management system entitled COMPASS (Korpal,
1992). This system initially encompassed 16 kilometers of express and collector freeway.
The system incorporated induction loop detectors embedded in the roadway approximately
every 600 meters.  This spacing provided detector coverage for each unique roadway
segment and for all freeway access and egress roadways.

The loop detectors are connected via fibre optic cables to the operations control centre
located on the north side of Highway 401 at Keele Street. In addition, closed circuit
television (CCTV) cameras with a viewing range of approximately 700 meters, are located
every 1000 meters. Operators in the control centre can control the camera's view through pan
and zoom capabilities to observe traffic conditions along the freeway.

Initially, the loop detector stations were operational from Yonge Street, in the middle of
the study area, west to the end of the study area. The detection system was expanded
eastward to Warden Avenue, but this section was not operational during the course of this
study.

7.2 Acquisition of Data Necessary for O-D Estimation

7.2.1 Network representation
For this study, the Highway 401 network was examined from Morningside Avenue in the
east to Highway 427, in the west. This portion encompasses the entire express/collector
facility as of the summer of 1992. This section of Highway 401 includes 22 interchanges
with connecting arterial roads and other freeways.

For the purposes of this study, Highway 401 was abstracted into a series of directed links
and nodes. Links were defined such that a single link existed for each FTMS detector station.
Link boundaries were defined such that detector stations were positioned near the midpoint
of the link. This permitted the spot FTMS speed measurements to be used to estimate the link
travel times. A summary of the number of links and nodes required to represent the
eastbound direction of Highway 401 is provided in Table 7-1.

Figure 7-2 illustrates the abstract link and node representation of the eastbound direction
of Highway 401. In order to provide a better aspect ratio of the network, the eastern half of
the network is plotted below the western half. For flow progression purposes these two
halves are connected and appear to the model as one continuous segment.

Table 7-1: Number of links and nodes used to represent the eastbound direction of
the Highway 401 network

Node/Zone Type Number Link Type Number
Origins 43 Single 10

Destinations 35 Express 48
Intermediate Nodes 147 Collector 57
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Ramps 115
Transfer 9

Total 225 Total 239

Figure 7-2: Link and node representation of the Highway 401 eastbound network
(not to scale)

7.2.2 Link flows
The COMPASS FTMS detector stations measure and transmit volume, as well as occupancy
and speed data, to the central computer every 20 seconds. Twenty second detector data for
the two 24-hour periods of May 1, 1991 and June 8, 1992 were obtained from the MTO. An
initial examination was carried out on the data from May 1. This examination revealed
several potential sources of errors arising from the manner in which the data are stored.

The total station flow is reported as the total number of vehicles detected during the
previous 20 seconds for all lanes. If one of the lane detectors is inoperative, then it reports -
9999 and does not contribute to the computed total. If the lane station reports data that are
just considered suspect, then the station will report the data as negative. If any lane detector
reports negative data, then the station total is also reported as negative, as the entire data
sample may be suspect. For example, consider a three-lane section, in which one of the lane
detector's is inoperative. The recorded lane flows might be 3, 5, and -9999 vehicles per 20
seconds for each respective lane detector. The station total is computed as (3+5) = -8.
Clearly, this reported total is less than the actual, as the input from one of the lane detectors
is not considered. Though the station data are marked by making them negative, it is not
possible to distinguish between station data resulting from a suspect lane detector and a
station that is inoperative.

Despite these imbedded data errors, these data represent the only available data source
that quantifies existing traffic conditions. To gain an understanding of the character of the
available data, it is useful to view a graphical representation of typical system data. Figure 7-
3 illustrates a 22 hour time series of typical 20 second and aggregated 15 minute volume data
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for a three lane section in the eastbound collector lanes. Significant variations over time are
evident in the 20 second volume data. To reduce this variation within the data, to reduce the
storage requirements, and to provide a practical time slice duration over which time varying
demands could be estimated, all data were aggregated into 15 minute average values. As
illustrated in Figure 7-3 this aggregation significantly reduces the remaining variation in the
data.

Figure 7-3: Typical 20 second and aggregated 15 minute FTMS detector volume
data reflecting conditions on a 3 lane section in the eastbound collector
at Avenue Road on May 1, 1991 (Station # 401DE0100DEC)

7.2.3 Route determination
Since the O-D demands are unknown, the traditional approach of using traffic assignment
techniques for determining appropriate paths is not possible. For the estimation of O-D
demands for the Highway 401 network, neither the utilized routes nor the O-D demands are
known.

Since the true routes and route weights are unknown, some estimate of these quantities
must be made. The simplest routing assumption is to route all traffic along the single shortest
path. This approach is clearly unrealistic, as virtually all traffic demand would either use the
collector lanes or the express lanes, exclusively. A more realistic approach is to assume that
the two alternative paths, that are available, are both utilized in some proportion. For the first
path (express route), a driver will attempt to access the express lanes at the earliest
opportunity, and exit the express lanes at the latest possible point. For the second path
(collector route), the collector lanes are utilized for the entire trip. In accepting these two
paths as the only route alternatives, it is assumed that drivers do not arbitrarily alternate
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between express and collector lanes without having a distinct preference for either one
facility or the other.

Though the routes have been identified, the proportion of demand using each route must
still be determined. To simplify the problem, it was assumed that the proportion of demand
utilizing each route remained constant through both time and space for each direction. Thus,
the proportion of demand choosing the express route is the same at the diversion point at
Dixon Rd. during the a.m. period as it is at the transfer roadway at Markham Road during the
p.m. period.

A previous simulation modeling study of Highway 401 determined, that for these same
routing assumptions, the most appropriate split is for 80% of the demand to use the express
route and 20% to use the collector route (Hellinga and Van Aerde, 1994c). This same split is
assumed to be appropriate for this analysis. As noted by Hellinga and Van Aerde (1994b),
this assumption is limiting since it is possible that this split changes over time of day as well
as over distance. However, it is adequate for the purposes of illustrating the effectiveness of
the LSE and LRE models when applied to field data.

7.2.4 Link travel times
The COMPASS FTMS detector stations measure and transmit volume, occupancy, and in the
case of dual loop stations, speed data, to the central computer every 20 seconds. Single loop
stations cannot measure speed directly, so for each 20 second interval, an average vehicle
length that is computed from some nearby dual loop station, is used to compute an estimate
of speed. Approximately 30% of the 175 detector stations that were operational in 1992 were
dual loop stations.

Twenty second detector data for the two 24 hour periods of May 1, 1991 and June 8,
1992 were obtained from the MTO. An initial examination was carried out on the data from
May 1. This examination revealed that the accuracy of the speeds estimated by single loop
stations was at that time rather poor, particularly under low occupancy conditions. Two
factors contributed to these inaccuracies:
1. The first is the inaccuracies in the recording of measured station occupancy. At that

time, lane occupancy was measured in the field as a real value, but was truncated into
integer format before being transmitted to the central computer. This truncated lane
occupancy was used to compute the average station occupancy, which was also
truncated into integer format before being stored on tape. The impact of this method is
best illustrated using a simple example.
Consider a three-lane section of freeway from which lane occupancy data are recorded.
As illustrated in Table 7-2, the effect of dual truncation can lead to recorded station
occupancies of zero, while in reality the occupancy was 1.6%. The amount of error
introduced by this method of recording the station occupancy becomes less significant
as the occupancy increases.
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Table 7-2: Truncation effect on recorded station occupancies
Lane Occupancy (%) Station Occupancy (%)
True Recorded True Recorded
0.9 0 (0.9+1.9+1.9)/3 (0+1+1)/3
1.9 1 = 1.57 = 0
1.9 1

2. The second factor contributing to speed estimate inaccuracies is the need to have an
estimate of average vehicle length for each single loop station. In 1992 each single loop
station received an estimate of average vehicle length, every 20 seconds, from a nearby
dual loop station. Unfortunately, the average vehicle length at two detector stations,
during a 20 second interval, is not strongly correlated, particularly at low occupancies.
If a single truck is recorded during a 20 second interval at a dual loop station, then the
average 20 second vehicle length at this station might be 20 meters. However, unless a
single truck also happens to traverse, during the same time period, the single loop
station to which the average vehicle length is being provided, the estimate of average
vehicle length will be quite different from the actual average vehicle length. Under
heavy flow conditions, more vehicles contribute to the computed average and the
probability is lower that average vehicle lengths between stations will be very different.

Dual loop stations, which can directly measure speed, are considered to provide more
reliable speed data. However, these data may also contain significant systematic error. In
November 1992, it was discovered that, due to incorrect loop spacing, at least three dual loop
detector stations in the westbound express lanes were reporting speed data with significant
error1. Since that time, this error has been rectified, however, the data used in this study
predate this time and contain these errors.

The existence of COMPASS on Highway 401, provides an efficient means of obtaining
spot speeds and estimating link travel times. It is not clear, however, how accurate the
estimation of travel time from spot speeds typically is, particularly in view of the previously
described data inaccuracies.

A traditional floating car study was carried out to collect data describing trip duration as
a function of departure time. These data provide a measure against which travel times
estimated from spot speed data could be compared. A brief description of the study results is
provided here, while a detailed description is available in the literature (Hellinga and Van
Aerde, 1994a).

The study was carried out on three days; Monday, June 8, Thursday, August 6, and
Friday, August 7, 1992. In total, seventy-seven trips were made. Each trip traversed the
length of the study network in a single direction. Comparable travel times were estimated
from the aggregated FTMS data. A correlation analysis of these two data sources indicated
that the coefficient of correlation was 0.423, suggesting that the ability to estimate travel time
from 1992 FTMS detector data was rather poor. Despite the poor correlation found in this

                                                  
1Personal communication with D. Tsui of the Freeway Traffic Management Section of the
Ontario Ministry of Transportation. September 1993. Detector station I.D. numbers:
401DW0020DWE, 401DW0040DWE, 401DW0090DWE
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study, no other link travel time data were available, and since some estimate of link travel
time is required in order to estimate time-varying demands, the FTMS travel times were
utilized.

As indicated earlier, FTMS data were only available for approximately 16 of the total 35
km network. For those regions of the network for which FTMS data were not available, link
travel times were assumed to be the free speed travel time. This assumption is not accurate,
unless link flows are quite small. A better approach may have been to calibrate a
macroscopic speed-flow relationship, and estimate speeds based on the estimated flows.
However, this approach is also not without difficulties, as it is not possible to determine from
flow alone, whether a link is operating in the uncongested, or congested regions of the speed-
flow relationship.

Potential sources of error within the estimation of link travel times must be evaluated in
relation to the discretized time slice duration, and the average trip duration. If the time slice
duration is much shorter than the average trip duration, then even small errors in the
estimation of the link travel times can result in the association of a flow resulting from a
particular demand to the incorrect time slice. When the time slice duration is longer, then
larger link travel time errors can be tolerated before flows are associated with incorrect time
slices.

It has already been noted that the available link travel time data for the Highway 401
network is not perfect. Before any projections of the impacts of these inaccuracies can be
made, it is necessary to examine the characteristics of the duration of trips made on this
network. Table 7-3 provides data describing trip duration as a function of departure time and
route for the eastbound direction of Highway 401.

It is evident from Table 7-3, that except for trips made during the Friday p.m. peak
period, trips are no longer than 34 minutes in duration. Since the duration of the observation
time slice, for the estimation of the time-varying O-D demands, is 15 minutes, the longest
trips will be completed in approximately two time slices. Furthermore, these trip durations
are representative of trips that traverse the entire 35 km section of freeway. It would be
expected that most trips do not traverse the entire network and, as a result, would also have a
shorter duration. However, the true trip length distribution is not known, with the result that
it is not possible to verify this expectation using field data. It will be shown in Section 7.3.5,
however, that both the LSE and the LRE models predict O-D demands that result in an
average trip length of approximately 10 km, suggesting that many trips will be able to be
completed within a single 15 minute time slice. Due to the short trip duration, relative to the
time slice length, it is possible that the errors within the estimates of link travel times may
ultimately have relatively little impact on the estimated O-D demands. It would be expected
that these link travel time inaccuracies would have a more significant impact if the
discretized time slice were to be made shorter, to say 5 minutes. An examination of these
impacts is outside of the scope of this thesis.
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Table 7-3: Measured trip duration as a function of day, departure time, and route
taken, for the eastbound direction of Highway 401

Date Express Collector
Departure Time Duration (min) Departure Time Duration (min)

Monday 7:20 a.m. 30.2 7:05 a.m. 24.7
June 8 8:35 a.m. 27.2 9:20 a.m. 21.8
1992 2:35 p.m. 20.3 9:50 a.m. 23.6

5:00 p.m. 34.4 3:30 p.m. 27.1
3:35 p.m. 32.2
6:20 p.m. 20.3

Number of trips 4 6
Thursday 7:50 a.m. 27.8 6:20 a.m. 20.4

Aug. 6 8:00 a.m. 26.7 7:55 a.m. 32.0
1992 9:30 a.m. 22.0 9:35 a.m. 21.9

9:35 a.m. 22.1 2:40 p.m. 22.8
2:35 p.m. 23.5 4:20 p.m. 33.9
4:20 p.m. 32.2
4:25 p.m. 33.5

Number of trips 7 5
Friday 6:25 a.m. 19.4 6:30 a.m. 22.3
Aug. 7 6:30 a.m. 20.5 7:45 a.m. 27.3
1992 7:45 a.m. 27.9 7:55 a.m. 32.2

9:20 a.m. 18.7 9:20 a.m. 21.1
9:30 a.m. 20.9 3:00 p.m. 34.7
3:05 p.m. 38.8 3:10 p.m. 33.6
5:20 p.m. 41.6 5:20 p.m. 35.4
5:30 p.m. 41.5

Number of trips 8 7
Sub Total 19 18

Total number of trips 37

7.3 Determination of Time Varying Demands

7.3.1 Introduction
The formulation of the dynamic LSE and LRE models has been described previously in
Chapter 6. In this chapter, these formulated models are applied to the previously described
Highway 401 network. The previous sections of this chapter have described the physical
network characteristics, the quantity and quality of the available FTMS link flow data, and
route and route weight assumptions. Before examining any results, it is necessary to describe
the parameter settings of the O-D estimation process.

FTMS link flow data, reflecting traffic conditions on Highway 401 between 5 a.m. and
11 a.m. on June 8, 1992 were utilized. These data were aggregated into 24 periods, each of a
15 minute duration. Neither path, nor node continuity of flow existed. Observed flows were
available for only 68 of the 239 links within the network. To provide a constraint to the
model for the links for which observed flows did not exist, the link's capacity was considered
to be the observed flow whenever the estimated flow exceeded the link's capacity.
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Since no prior information was available describing the magnitude or structure of the true
O-D demand, the seed demand was defined to consist of a constant value in all inter-zonal O-
D cells. To limit the amount of computing time required, a maximum of 30 iterations of the
algorithm were carried out.

Based on these conditions, the LSE and LRE models were applied to the Highway 401
network. After 10 iterations, the LRE model's marginal improvement was less than 0.5%, so
no more iterations were carried out. All 30 iterations were carried out for the LSE model.
The results of these applications are discussed in the next sections. The data used to estimate
the time-varying demands for the Highway 401 eastbound network are provided in Appendix
C.

7.3.2 Evaluation of estimated demands with respect to
aggregated observed link flows

A primary measure of the effectiveness of an O-D estimation method, is an aggregate
measure of the link flow errors. As indicated in earlier chapters, one such convenient
measure is the normalized link flow error (E n  for the LSE mode, and Er

n  for the LRE
model) in which a measure of the link flow error is represented as a proportion of the mean
observed flow. A perfect correlation between observed and estimated flows results in a
normalized link flow error of 0.0 for the LSE model, and 1.0 for the LRE model.

The change in the normalized link flow error as a function of the iteration number is
illustrated in Figure 7-4a for the LSE model, and in Figure 7-4b for the LRE model. After 30
iterations, the demand estimated by the LSE model resulted in a normalized link flow error
of 13.9% of the average observed link flow. The average observed link flow, computed from
1705 link flow observations, was found to be equal to 2755 vph, while the average estimated
link flow, computed over the same links, was equal to 2766 vph. As illustrated in Figure 7-
4a, the greatest reductions in the normalized error occurred during the initial number of
iterations. Consistent with observations made in earlier chapters, the marginal improvement
decreases with increasing numbers of iterations.

Figure 7-4b illustrates a similar pattern for the LRE model results. The final normalized
link flow error after 10 iterations is 1.183, or approximately 18.3% of the average observed
link flow. In fact, if E n  (instead of ER

n ) is computed for the LRE model results, the
normalized link flow error is 16.35%. The average estimated link flow, computed for only
those links for which observed data were also available, is equal to 2724 vph.

Both Figure 7-4a and Figure 7-4b indicate that carrying out more iterations would reduce
the normalized link flow errors further. However, these reductions would likely be quite
small, as the marginal improvements (slope of the curve) that are evident at the current
maximum iteration number, are already rather small. Even for the relatively few iterations
that were carried out, the magnitude of the normalized link flow error is quite small. Given
the previously discussed errors in the flow data, the lack of observed data for a large portion
of the system, the questionable reliability of the link travel time data, and the limiting
assumptions made in selecting the routes, this level of accuracy appears quite high.
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Figure 7-4a: Normalized link error resulting from the LSE model

Figure 7-4b: Normalized link error resulting from the LRE model
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7.3.3 Evaluation of estimated demands with respect to
individual observed link flows

The previous section examined the performance of the LSE and LRE models by analyzing
the link flow error aggregated across all links and all time slices. It is also of interest to
examine the correlation between observed and estimated link flows by time of day for
several individual links. Since observed link flow data are available for 68 of the 239 links in
the network, it is not practical to individually examine all 68 links. Rather, just two samples
of the total number of links are selected. The first link, link 8, consists of five lanes and is
located at the west end of the network, just prior to the diverge at the beginning of the
express-collector system. The second link, link 12, consists of three lanes and is located in
the express lanes, between the Highway 409 on-ramp and the off-ramp to Highway 400.

Figures 7-5a and 7-5b illustrate the observed and estimated link flows by time of day, for
links 8 and 12, respectively. As indicated by both figures, both the LSE and the LRE models
predict flows that closely follow the trends in the observed data. Naturally, it is not possible
to make any general conclusions based on these data, as it could be argued that these two
links are not representative of the entire system.

In order to make more general conclusions, the correlation between observed and
estimated link flows can be determined for all of the 1705 link flow observations that are
available. Figures 7-6a and 7-6b illustrate this correlation for the LSE and the LRE models,
respectively. The computed correlation coefficient between the observed and estimated link
flows is 0.9871 for the LSE model and 0.9821 for the LRE model. In both cases, the high
level of correlation indicates that there is a strong association between the estimated and
observed link flows. However, these values must be considered with some caution as the
observed data are not all strictly independent.
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Figure 7-5a: Comparison of observed and estimated flows by time of day for link 8

Figure 7-5b: Comparison of observed and estimated flows by time of day for link 12
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Figure 7-6a: Correlation between observed link flows and those estimated by the
dynamic LSE model

Figure 7-6b: Correlation between observed link flows and those estimated by the
dynamic LRE model
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7.3.4 Evaluation of estimated demands with respect to observed
origin productions and destination attractions

The measures of performance examined thus far have been limited to comparisons between
estimated and observed link flows. The actual goal, however, is to estimate O-D demands
that closely replicate the true demands. Since the true demands are unknown, it is not
possible to make any direct comparisons between the estimated and true demands. It is
possible, however, to observe the total number of origin productions and the total number of
destination attractions. These values represent the flows observed on the links connected to
each origin and to each destination zone. In this manner, comparisons can be made between
observed and estimated row and column totals of the demand matrices.

Each interchange on the freeway was considered as both an origin and a destination zone.
Based on this definition, it was possible for two or more links to be associated with each
origin or destination zone. This occurs when two on-ramps, one carrying southbound flow,
and the other carrying northbound flow, exist within the same junction. Table 7-4 provides a
listing of the links that were aggregated to form the total origin and destination flows.

It has been noted earlier that observed link flows are available for only 68 of the 239
links within the network. Observed data were not available for many of the defined origin
and destination zones. In order to carry out a comparison, observed flows were required for
all of the links that were associated with a zone. As a result, comparisons could only be made
for four origin zones (Highway 409, Islington Ave., Weston Rd., and Yonge St.) and six
destination zones (Dixon Rd., Islington Ave., Weston Rd., Keele St., Dufferin Ave., and
Avenue Rd.). For each of these zones, the RMS error between the observed and estimated
flows was computed as a proportion of the total observed flow. Figures 7-7a and 7-7b
illustrate the results as a function of time of day for origins and destinations, respectively.

Several observations can be made based on Figures 7-7a and 7-7b. First, the LRE model
provides much better estimates of the zonal flows than does the LSE model. Second, the
quality of the LRE model estimates have much smaller variations across time of day, than do
the LSE model estimates. This is particularly evident in Figure 7-7b. This poor performance
by the LSE model seems contradictory to the other performance measures examined thus far
which indicated that the LSE model performed marginally better than the LRE model.

To provide some understanding for this apparent contradiction, one must first review the
objective functions of the two models. The LSE model attempts to minimize the squared
absolute link flow error aggregated across all links and all time slices. Since only the
absolute error is considered, the algorithm first contends with links having large absolute
error. Negative flows are not permitted, so the links with a large absolute error will tend to be
those links which have large observed flows. Conversely, links with low observed flows are
not likely to have a significant impact on the estimated O-D. Only 30 of the 68 links, for
which observed data are available, are ramp links. The remaining 38 links are either express
or collector links, having significantly higher flows than the ramp, or zonal, links. Thus, the
LSE model places more weight on replicating the higher flow mainline links than the lower
flow zonal links.
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Consider Figures 7-8a and 7-8b which depict the correlation between the observed
destination flows and those estimated by the LSE model and the LRE model, respectively. It
is immediately apparent that there exists a much higher correlation between the LRE model
estimates and the observed destination flows (r = 0.95), than between the LSE model
estimates and the observed flows (r = 0.75). The LSE model tends to over-estimate the
destination flows, particularly at low flows. This trend is consistent with the earlier
observation that the LSE model tends to place more weight on links having high observed
flows. Since flows cannot be negative, errors on links with low flow tend to result from an
over-estimation of the flows.

Since the LRE model considers the link flow error relative to the observed flow, it would
be expected that the flows estimated by the LRE model would have an approximately
consistent relative error. Figure 7-8b indicates that there is a high degree of correlation
between the observed destination flows and the LRE model estimates. Again, this is
consistent with the model formulation, as a link flow error of 10 on a link with an observed
flow of 100 contributes equally to the objective function as a link error of 1000 for a link
with an observed flow of 10,000.

Table 7-4: Definition of zones and the links that constitute the zonal flow
Zone Name Node Type Number of Links Link Numbers

H401 EB Thru Origin 1 1
Hwy 427 On Origin 2 125 126
Dixon Rd. Off Destination 1 127
Dixon Rd. On Origin 2 130 131
Hwy 409 On Origin 2 139 138
Islington Off Destination 1 132
Islington On Origin 1 142

Weston Rd. Off Destination 1 143
Weston Rd. On Origin 2 146 147

Hwy 400 Off Destination 2 148 149
Hwy 400 On Origin 1 155
Keele St. Off Destination 1 156
Keele St. On Origin 2 159 160

Dufferin St. Off Destination 1 161
Allen Expwy Off Destination 1 164
Allen Expwy On Origin 2 168 173
Bathurst St. On Origin 1 174
Avenue Rd. Off Destination 1 175
Avenue Rd. On Origin 2 178 179
Yonge St. Off Destination 1 180
Yonge St. On Origin 1 185
Bayview Off Destination 1 186
Bayview On Origin 2 189 190
Leslie St. Off Destination 1 191
Leslie St. On Origin 2 194 195
DVP/404 Off Destination 2 196 197
DVP/404 On Origin 2 204 205
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Victoria Prk Off Destination 1 208
Victoria Prk On Origin 2 211 212

Warden Off Destination 1 213
Warden On Origin 1 218

Kennedy Rd. Off Destination 1 219
Kennedy Rd. On Origin 2 222 223
McCowan Rd. Off Destination 1 224
McCowan Rd. On Origin 2 227 228
Markam Rd. Off Destination 1 229
Markam Rd. On Origin 2 232 233
Neilson Rd. Off Destination 1 234
Neilson Rd. On Origin 1 239
H401 EB Thru Destination 1 106

Figure 7-7a: RMS error between estimated and observed total origin productions
presented as a percent of the average observed total
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Figure 7-7b: RMS error between estimated and observed total destination attractions
presented as a percent of the average observed total

Figure 7-8a: Correlation between observed total destination zone flows and those
estimated by the LSE model
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Figure 7-8b: Correlation between observed total destination zone flows and those
estimated by the LRE model

7.3.5 Further characteristics of the estimated O-D demands
In addition to the performance measures examined thus far, the estimation of the O-D
demand permits the average trip length and the total number of trips to be computed. These
characteristics cannot be computed without either the knowledge of the O-D demands, or
alternatively several assumptions, such as the average number of links traversed by a vehicle
during a trip. The estimation of these characteristics provides for an opportunity to perform a
reality check on the estimated O-D. Operators of FTMS and traffic engineers employed by
departments of transportation often have some notion of the total number of trips that are
made within a network during a specified time period. They may also have some estimate of
the average trip length. A favourable comparison of these two quantities against the values
derived from the estimated demands serves to place more confidence within the estimated
demand.

Figure 7-9 illustrates the average trip length derived from the demand estimated by the
LSE and LRE models after each iteration. It is interesting to note, that both models estimate
approximately the same average trip length. The LSE model's final estimate of average trip
length is 9.9 km while the LRE model's final estimate is 9.7 km. Unfortunately, since no
average trip length data were available for the Highway 401 network, it was not possible to
compare the model estimates against field data.

Figure 7-10 illustrates the total number of trips represented by the O-D demand estimated
by the LSE and LRE model after each iteration. Again, both models estimates are
approximately equal. The total number of trip departures during the six hour period from 5
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a.m. to 11 a.m. on the eastbound direction of Highway 401 was estimated to be 160 400 trips
by the LSE model and 171 000 by the LRE model. Again, no data were available for
Highway 401 against which these estimates could be compared.

Figure 7-9: Average trip length implied by the time varying demand estimated by
the LSE and LRE models as a function of iteration number
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Figure 7-10: Total number of trips contained within the time varying demand
estimated by LSE and LRE models as a function of iteration number

7.4 Summary
Highway 401 is a challenging urban freeway corridor to model. The problem of estimating
static or dynamic demands are complicated by the existence of significant binary route
choices due to the presence of the parallel express and collector facilities, and by the
availability of FTMS data for only 45% of the entire system. Furthermore, there existed
substantial systematic and random errors within the existing flow and speed data. All of these
conditions produced an environment that was not ideal for estimating O-D demands, but was
perhaps typical.

The choice of aggregation time slice duration (15 minutes) may be too long in view of
the fact that few trips required more than 35 minutes to complete. However, a shorter time
slice duration would significantly increase the impact of the errors within the travel time
estimates.

Despite limited data, and the presence of systematic and non-systematic errors, both the
LSE and LRE models were able to estimate a time-varying O-D demand. Based on the
available measures of performance, both models were able to estimate a time-varying
demand that successfully reflected the observed link flows.

It is recommended that dynamic O-D demands be re-estimated when the FTMS coverage
has been extended to the full system. Furthermore, as the MTO has been made aware of the
systematic errors within the FTMS data collection process, efforts have been made to
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eliminate, or at least reduce, the impacts of these errors. As such, more recently collected
data should be of higher quality.
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CHAPTER 8

RGS VEHICLE PROBES AS ESTIMATORS
OF DYNAMIC O-D DEMANDS

8.1 Introduction
With the current field trials and anticipated implementation of Route Guidance Systems
(RGS) much effort has been expended considering system and user benefits that can be
obtained when RGS equipped vehicles receive traffic information in near real-time.
However, much less research has been conducted investigating how these near real-time data
might be acquired and how reliable these acquired data must be in order to be of consistent
marginal benefit. The provision of two-way communications between the Traffic
Management Center (TMC) and RGS equipped probe vehicles makes it possible to very
efficiently assemble data describing the departure rates of probe vehicles in near real-time.
This chapter examines the use of RGS equipped probe vehicles as estimators of real-time O-
D departure rate information for all vehicles.

8.1.1 Vehicle probe data
Two types of data can be obtained from probe vehicles, namely link travel time data and
origin-destination (O-D) data. As each probe vehicle traverses a link, its travel time can be
transmitted back to the TMC. This travel time provides a sample of the current travel time
experienced by all drivers utilizing that link at that time. When drivers of RGS equipped
vehicles initiate a trip, the intended trip destination is usually entered into the on-board
computer system. The vehicle's current location (trip origin) and intended destination can
then be transmitted back to the TMC, providing a centralized sample of the population O-D
demand departure rates for that time period.
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Little research has been conducted into investigating the expected reliability of using
probe data to estimate O-D demands. Some earlier research described in the literature has
examined the reliability of probe data from a planning, rather than an operational perspective
[Van Aerde et al., 1991a]. This work has focused on determining the number of probe
vehicles required to obtain some minimum level of confidence in the O-D estimates. Van
Aerde et al. [1993] have also examined the use of vehicle probes to estimate both travel time
and O-D probe data using the same test network used in this chapter. This work, being more
general in scope, does not examine the associated theories in the same level of detail, and
does not explore the level of surveillance and trip length bias issues that are examined herein.
Other research has examined the potential of using probe data as a source for obtaining link
travel times [Boyce et al., 1991]. However, this latter research has not comprehensively
developed statistically based expressions that quantify the reliability of an O-D estimate
made from probe data.

8.1.2 Focus of this chapter
Two critical issues must be addressed when using probe vehicles as sources of traffic
information. First, it needs to be established if there is a sufficient quantity of data to provide
for adequate coverage of the network. Second, it must be determined if the available
coverage is of sufficient quality to generate data which possess sufficient statistical
significance to be of practical benefit to the TMC or other RGS equipped vehicles. This
chapter describes an analysis approach that assesses this latter issue using statistical sampling
theory. The approach is developed for application to general networks, and is subsequently
briefly illustrated using a simple hypothetical network using a microscopic traffic simulation
model capable of modeling probe vehicles.

This chapter has two objectives. First, the mathematics associated with the relevant
statistical sampling equations are developed in order to provide theoretical estimates of the
anticipated reliability of O-D estimates that are made from vehicle probe data. Second, a
traffic simulation model is used to provide samples of typical vehicle probe data for an
example network in order to demonstrate empirically the developed equations. The analytical
estimates of the mean O-D rates and the associated confidence limits are then compared with
the O-D estimates from the simulation model.

The remainder of this section provides a list of nomenclature that is used strictly within
this chapter. Section 8.2 describes the analytical development of equations which will
provide statistically unbiased estimates of the mean O-D demands for the entire population
from the probe data sample. Section 8.3 describes the development of equations that provide
estimates of the reliability of these O-D demands. Section 8.4 extends the development of
Section 8.3 by examining the impact of population size and level of network surveillance on
estimates of O-D reliability. The developed equations are illustrated by way of a simple
example. Section 8.5 then examines a method for determining if the links under surveillance
provide an unbiased sample of all of the trips within the network. Section 8.6 of this chapter
describes the simple example traffic network that is employed to illustrate the analysis.
Results from the simulation and the analytical approach are presented and compared.
Conclusions are made in Section 8.7.
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8.1.3 Nomenclature
It is useful to first define several important quantities before deriving expressions for the
mean and reliability of O-D demand estimates. Each of the following quantities are
applicable to only one single time period out of an entire time series of data for an entire
peak period. However, each can be expanded to describe a complete time series of
observations or estimates by adding a subscript representing time. Since all derivations that
will be presented can be applied independently for any single period, the presentation is
initially simplified by omitting the time period subscript in the following variables.

Pij= the population probability of any given trip being between origin i and destination j
pij= an estimate of Pij made from some sample of the total population (the probes)
D = the true total number of trip departures initiated in the entire network during the

given period
d = an estimate of D based, in part, on probe and standard loop detector data
Dij= the true number of trip departures between origin i and destination j in the given

time period
dij= an estimate of the number of trip departures between origin i and destination j
M= the population network wide level of market penetration defined as the proportion
of

all trips, departing at some time t, that are RGS-equipped
m = an estimate of M based on a sample of the RGS equipped and non-equipped

vehicles observed on selected links on the network
Mij =the population level of market penetration for origin i and destination j
cij= the number of probe departure calls received for origin i and destination j during the

given period
np= the total number of probe vehicles initiating trips in the network during the current

period

In the above definitions, upper case variables represent true (though usually unknown)
population values while the lower case variables represent values associated with the probe
vehicles, which represent a sample of the entire vehicle population. Lower case variables
associated with this sample are typically used as estimates of the population values. The term
population refers to the combined fleet of RGS equipped and non-equipped vehicles. The
probes are initially considered to represent an unbiased sample from this population.

In practice, only two of the above quantities are known; namely the number of probe
calls associated with departures from origin i towards destination j (cij), and the total number
of probe vehicles initiating trips in the network during the current period (np). It is desired to
determine dij, an estimate of the true demand between origin i and destination j, and to be
able to quantify how close this estimate may be to the true value Dij. It should also be noted
that it may be known how many total probe vehicles are registered in an urban area relative
to the total number of registered vehicles. The ratio of these two values is different from the
M and Mij values that are actually existing on a network during a particular time period as the
former ratio is not time dependent. The relationship between several of the above variables is
illustrated in Figure 8-1.
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Figure 8-1: Schematic representation of relationships between several key variables
which were defined

8.2 Derivation of Estimate of Population O-D
Demands

The analysis method which is developed in this chapter, is based on the premise that an
estimate of the prevailing O-D demand can be made by scaling the number of probe calls
received by the level of market penetration. Therefore, an expression is first developed to
provide an estimate of the O-D demand and the variability that is expected to exist within
each of the inputs to this expression. Subsequently, expressions are developed that quantify
the variability in the estimate of the O-D demand and the impact of considering that the
vehicle probes are sampled from finite or infinite populations.

8.2.1 Estimating the population O-D demand Dij - Approach 1
If the level of market penetration for a given time period is defined as the ratio of probe
departures to total population departures, Equation [8-1a] would yield an exact estimate of
the O-D specific departure rates (Dij). Unfortunately, as Mij can only be computed exactly by
also utilizing Equation [8-1a], Equation [8-1a] is usually of little practical value. Equation [8-
1a] could be simplified by dropping the O-D specific subscripts from Mij, an approach that is
subsequently shown to be practical for generating an estimate of the mean of Dij.
Unfortunately, the generation of an estimate of the variance of Dij would be complicated by
the need to estimate both the sampling error in estimating M by m, and the additional error in
approximating Mij by M. The interested reader is directed to Appendix D where this
approach is pursued and shown to yield the same results as the alternative approach which is
presented below.

Total number of 
population trip departures (D)

Population departures between origin i
and destination j (Dij)

Number of probe
departures (n  )p

Representation for some period in time (t)

Number of probe
vehicle departures

between origin i
and destination j
(c  )ij
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8.2.2 Estimating the population O-D demand Dij - Approach 2
The alternative approach considers that the overall O-D specific departure rate can be
estimated by apportioning an overall estimate of the total fleet departures within a certain
time period (D) to all the individual O-D cells which make up the complete O-D matrix, as
shown in Equation [8-1b].

DPD ijij ⋅= [8-1b]

In this case, the population probability that a trip will be associated with a particular O-D
pair (Pij) is considered to be unknown, as is the total number of trip departures in the
network D. If the population probability Pij can be approximated by the sample probability
pij, and the total number of vehicle departures D, can be approximated by d, then Equation
[8-1c] provides an estimate of the population departures between origin i and destination j.

dpdD ijijij ⋅=≈ [8-1c]

In order to use Equation [8-1c] in practice, one must be able to compute pij and d. The
following subsections provide the development of these estimates. Subsequently, the
reliability of dij, as an estimate of the population O-D demand, is examined as a function of
the variance of pij and d.

8.2.3 Estimating the population probability Pij and total
departures D

The population probability that a given trip will be associated with origin i and destination j
can be estimated from the number of probe vehicle departures using Equation [8-2].

p

ij
ijij n

c
pP =≈ [8-2]

As indicated in Equation [8-3], the total number of trip departures in the network can be
estimated as a function of the number of probe vehicle departures and the prevailing network
level of market penetration.

M
n

D p= [8-3]

The network level of market penetration is generally unknown but can be estimated as is
shown next.
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8.2.4 Estimating the exact level of market penetration from
route flows

The exact level of market penetration could ideally be estimated using Equation [8-4a].
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∑∑
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n
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,

,

[8-4a]

where: ar,ij = number of probe vehicles going from origin i to destination j using
route r that initiated their trip during the current time period

br,ij = number of vehicles going from origin i to destination j using route r
that initiated their trip during the current time period

In practice, there exist three difficulties that prevent the practical use of Equation [8-4a].
First, the level of market penetration, M, is strictly defined as the proportion of the vehicles
departing their trip origin, at some time t, that are RGS-equipped. While it is possible to
observe the number of vehicles passing an arbitrary point within the network during some
time period, it is not possible to measure exclusively those vehicles that are just beginning
their trip.

Second, the routes that are utilized by both equipped and non-equipped vehicles, between
each O-D pair, are generally unknown. Such routes could potentially be estimated through
some form of traffic assignment, but a traffic assignment requires that the O-D demands be
known a priori. Alternatively, a heuristic route identification algorithm might be employed
to satisfactorily identify the routes. Unfortunately, even if some method were to identify the
utilized routes accurately, it would not be possible to quantify how close the identified routes
were to the unknown true routes. Thus it would not be possible to subsequently quantify the
reliability of the O-D estimate.

The third difficulty in applying Equation 8-4a arises in determining the component of the
observed link flow that is associated with each O-D. Clearly, if a link is utilized by only a
single O-D pair, then all of the observed flow can be attributed to that O-D. However, if a
link is used by more than one O-D pair, it is not possible to exactly allocate the portion of the
observed flow that is associated with each of the O-D pairs that utilize that link. Ultimately,
if it were possible to determine the correct route flows for each O-D pair, and to ascertain
when these vehicles began their trips, one would have already determined the O-D demands
that are ultimately being sought.

8.2.5 Estimating the approximate level of market penetration
from link flows

Since it is not possible to compute M exactly, one may estimate the level of market
penetration for time t, based on the proportion of vehicles observed on the network, that are
RGS-equipped. This is accomplished by sampling a number of links within the network, as
illustrated in Equation [8-4b]. From these sampled links, the ratio of the number of probe



Chapter 8: Using RGS Vehicle Probes as Estimators of Dynamic O-D Demands 181

vehicles to the total number of vehicles can be computed as an estimate of the network wide
level of market penetration.

∑
∑

=≈

L
L

L
L

b

a
mM [8-4b]

where: aL = number of probe vehicles using link L
bL = total number of vehicles using link L

In order for the above expression to be valid it needs to be assumed that the trip length
distributions of RGS-equipped and non-equipped vehicles are approximately the same. If this
assumption is not valid, and RGS-equipped vehicles tend to have longer trips, then one
would expect them to be observed, by way of detector counts, in a disproportionately higher
number than the level of market penetration would warrant. It is further assumed, that the set
of links under surveillance provides an unbiased sample of the total number of trips in the
network. A method to determine if the links under surveillance do indeed provide an
unbiased sample is examined later in Section 8.5.

It should also be noted that an estimate of M, based on Equation [8-4b], may lag in
responding to temporal variations in M. Equation [8-4b] relies on the ratio of RGS-equipped
to non-equipped vehicles observed on the network, in order to estimate M. As long as a
vehicle is still en route, its presence on the network impacts the estimate of M, even though
the true M may be quite different from what it was when this vehicle initiated its trip. This
effect is amplified in networks which have long average trip durations.

8.2.6 Summary
Despite the above limitations, an estimate of the total number of trip departures can be made
by approximating the population level of market penetration using Equation [8-4b] and
substituting this value into Equation [8-3], resulting in Equation [8-5a].

m
n

dD p=≈ [8-5a]

On the basis of the previous discussions, it is possible to compute an estimate of the
population O-D departures from the number of probe vehicles, the number of probe calls,
and an estimate of the network level of market penetration.
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ijijij =⋅=⋅=≈ [8-5b]

This equation is consistent with engineering intuition, as it indicates that a best estimate
of the total number of departures between any O-D pair, is the number of probe departures
between this O-D pair, scaled by the estimate of the level of market penetration. The rather
convoluted manner in which this simple equation is derived is necessary in order to provide a
mechanism by which the associated variance of Dij can be computed, as is shown next.
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8.3 Derivation of Estimate of Reliability of O-D
Demand Estimates

The expressions derived in Section 8.2 provide an estimate of the population O-D departure
rates based on sample quantities, but these sample quantities are prone to standard sampling
errors. This section will develop expressions to quantify these component errors such that the
reliability of the overall O-D estimates can be estimated. First, a general expression is
developed for the variance of dij. Since dij is a function of the estimate of the population
probability (pij) and the total number of departures in the network (d), subsequent sections
determine expressions for the reliability of these two component estimates.

8.3.1 Estimating the reliability of the O-D demand estimate
Since the O-D demand estimate dij in Equation [8-1c] is a function of two random variables
(pij and d), the confidence limits of dij may be derived from the confidence limits of pij and d
as is shown below:

Ang and Tang [1975] indicate that it is possible to use the first order Taylor series
expansion to approximate the mean and variance of dij as shown in Equations [8-6a] and [8-
6b].
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Before continuing, one may examine the third term of Equation [8-6b] which expresses
the impact of the covariance of pij and d. From Equation [8-2], it can be noted that pij is a
function of cij, the number of probe calls received, and np, the total number of probe vehicles.
From Equation [8-5a], one cannote that d is a function of np and m, an estimate of the level
of market penetration. For a given network, at some time t, the total number of probe
vehicles is the sample size, and as such is constant. Therefore, any covariance between pij
and d can only arise due to covariance between cij and m.

If a number of samples are taken, each consisting of np probe vehicles, then cij will vary
due to sampling errors. However, the variance in m results from sampling link counts of
probe and non-probe vehicles. Thus, sampling error for cij and m are likely to have a low
level of correlation and therefore, the level of correlation between pij and d is approximated
to be negligible. Then, the third term's contribution in Equation [8-6b] is negligible and can
be set to zero.

In view of Equations [8-6a] and [8-6b], Equation [8-6c] can be arrived at.

)VAR()VAR()VAR( 22 dppdd ijijij +≈ [8-6c]

In order to further develop Equation [8-6c], it is necessary to determine expressions for
the variance of pij and d, as is carried out in the following two subsections.
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8.3.2 Estimating the reliability of the population probability
The number of probe calls that are received for a given O-D pair can be considered to follow
a binomial distribution where each probe vehicle is either associated with a particular O-D,
or it is not. Thus, the number of probe vehicles (np) constitute a Bernoulli series with an
unknown population probability of success of Pij. For a single trial, the variance of the
population probability can be expressed as Pij(1-Pij). For a number of trials, Equation [8-7a]
provides the variance of Pij.
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Since Pij is unknown, the population probability is approximated using the sample
probability pij and the variance of the sample probability is as defined in Equation [8-7b].
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8.3.3 Estimating the reliability of the total number of network
departures

Having developed an expression for the reliability of pij, it is now necessary to develop
similar expressions for the reliability of d, the total number of network departures. First, it
must be recognized that, as illustrated earlier in Equation [8-5a], d is a function of the total
number of active probe vehicles and the level of market penetration.

It is again possible to use the first order Taylor series expansion as first introduced in
Equations [8-6a] and [8-6b] to approximate the mean and variance of d. However, for the
expansion of d, the number of vehicle probes, np, is a constant, and therefore the variance of
np is zero. Thus in this case, the approximate variance of d is as shown in Equation [8-8a].
The derivative of the total number of network departures with respect to the level of market
penetration is expressed in Equation [8-8b].
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Substituting Equation 8b into Equation 8a produces Equation [8-8c].
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Equation [8-8c] provides an approximation of the variation expected within d, the total
number of O-D departures throughout the network. Equation [8-8c] defines this variance in
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terms of the variance of the level of market penetration, however, this quantity has yet to be
defined.

To quantify the variance of the level of market penetration it can be stated that when a
trip is sampled on a particular link, it is either an RGS-equipped vehicle, or it is not. Again,
this leads to a Bernoulli sequence having a population probability of being RGS-equipped
equal to M. The number of probe vehicles that exist within a finite sample of vehicles (q)
from the network can then be considered to follow the binomial distribution. Using a line of
reasoning similar to that used to develop Equations [8-7a] and [8-7b], it can be shown that
the variance of the level of market penetration is as defined in Equation [8-9].
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8.3.4 Summary
Section 8.3 has provided the development of a number of equations that can be used to
approximate the reliability of the O-D demand estimates made based on probe information.
Initially, a general expression for this reliability was presented in Section 8.3.1. This
expression was a function of the variance of pij and d. Expressions for the reliability of pij
and d were developed in Sections 8.3.2 and 8.3.3, respectively. These three elements can be
aggregated in order to provide a more meaningful expression for the reliability of dij.

Substituting Equations [8-5a] and [8-8c] into Equation [8-6c] produces Equation [8-10a],
a general form for expressing the variance of dij in terms of pij and m.
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Substituting Equations [8-7b] and [8-9], expressions for the variance of pij and m
respectively, and Equation [8-2] into Equation [8-10a] results in Equation [8-10b].
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Equation [8-10b] can be used to determine the variance of the estimated O-D demand
between origin i and destination j. This equation has been developed assuming that sampling
has been done from an infinite population. Section 8.4 discusses the impact of this
assumption and provides a variation of Equation [8-10b] that can be used when considering a
finite population. Section 8.4 also provides some discussion on how to determine the
appropriate sample size, q, that should be used.

8.4 Practical Considerations
The above derivations considered that the level of market penetration and the probabilities
for associating a particular trip with an O-D were estimated based on samples taken from an
infinite population. The approximation is appropriate for low sampling rates, but not for
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scenarios where a significant proportion of the population is sampled without replacement, as
shown next.

8.4.1 Population size
In the equations developed thus far, it has been assumed that the variance of both pij and m
can be determined based on the binomial distribution, which assumes sampling from an
infinite population. However, it is clear, that if one considers only a specific day, then there
exist a finite number of trips that are initiated within the network during that day. As an
extreme, if the level of market penetration is 100% then the entire population is RGS-
equipped and the O-D demands for the given time period should be known with certainty.

For the analysis of finite populations, it is appropriate to utilize the hypergeometric
distribution instead of the binomial distribution. The mean values for the binomial and the
hypergeometric distributions are the same, but the variance of the hypergeometric
distribution requires that the variance of the binomial distribution be multiplied by an
additional term (the finite population correction factor), as presented in Equation [8-11a].
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where: F = finite population correction factor
qp = population size from which samples are taken without replacement
q = sample size that is taken from the above population

Thus, for a finite population, the variance of the estimated population probability as
expressed by Equation [8-7b] is modified as indicated in Equation [8-11b]. Similarly, the
variance of the level of market penetration as expressed in Equation [8-9] is modified as
indicated in Equation [8-11c].
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The determination of the sample size, q, in Equation [8-11c], is examined in the
following section.

8.4.2 Level of surveillance
The sample used for estimating the network level of market penetration should ideally
consist of individual trips which are sampled from the entire population of trips. However,
since it is not possible to query non-RGS vehicles as they initiate trips, link counts are
utilized as surrogates, as presented in Equation [8-4b]. If very many of the links in the
network are under surveillance, then almost all of the trips will be counted at some point.
Unfortunately, as each trip likely uses more than one link, the sample, consisting of the total
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number of link counts, will exceed the population – the total number of trips. Thus, if the
level of surveillance is very high, then the sample size should be equal to the population, and
the variance of the estimated level of market penetration for a finite population is equal to
zero.

For very low levels of surveillance, most trips are only counted once by loop detectors.
As a result, link counts approximate independent observations of trips. In this case, the
sample size is the number of link counts and the variance of the level of market penetration
for a finite population is expressed by Equation [8-12].
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where: B = ∑
L

Lb

bL = total number of vehicles using link L.

8.4.3 Impact on O-D reliability
An expression for the reliability of O-D demand estimates was made in Section 8.3.
However, this expression was based on the assumption that the population was infinite.
Furthermore, this expression did not provide any insight into the appropriate magnitude of
the sample size, q, used for the estimation of the level of market penetration. Section 8.4 has
addressed each of these two issues. On the basis of the discussions presented in Section 8.4.1
and Section 8.4.2 it is possible to develop four different expressions for the variance of the
O-D estimate.
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Having quantified the variance of the O-D estimate, confidence limits can be determined.
If it is assumed that the normal distribution is a suitable approximation for the distribution of
the variance of the O-D estimate, the 95% confidence limits are obtained by defining
boundaries at plus and minus two standard deviations from the estimate of dij.
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8.4.4 Example illustration
To illustrate the nature of the relationship between the variance, as computed from the
appropriate equation above, and network conditions, consider a network consisting of 7
zones in which 50,000 trips are initiated during a given time period. If all O-D pairs are
approximately equally likely, then the population probability that a trip will be associated
with origin i and destination j may be considered to be equal to 0.02. It is assumed that a high
level of surveillance exists within this network such that in the estimation of the level of
market penetration, all trips are included within the sample. Then, Figure 8-2 illustrates the
coefficient of variation (the standard deviation as a portion of the mean) of the O-D demand
estimate as a function of the level of market penetration. For levels of market penetration less
than 10%, the COV exceeds 10%. When it is assumed that sampling is taken from a finite
population, then the COV reduces to zero at a level of market penetration of 100%.

It is also instructive to examine how the COV varies with total number of trips. Figure 8-
3 illustrates COV as a function of the total number of trips for 10% and 25% levels of market
penetration. Again, the population probability that a trip is associated with an O-D pair is
0.02. Figure 8-3 indicates, that for this example, in order to ensure that the COV does not
exceed 0.5, a total of at least 2000 trips must be made at a level of market penetration of
10%. This implies that at least 200 probe vehicles are required to be active during this time
period.

Though 200 probe vehicles may not initially seem to be a demanding requirement, it
should be noted that these 200 probes must be initiating trips during the current time period.
If O-D rates are desired for each 15 minute period, then 2400 active probes are required for a
3 hour commuting period.
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Figure 8-2: Illustration of the coefficient of variation of estimated O-D demand as a
function of level of market penetration assuming all links in network
are under surveillance

Figure 8-3: Illustration of the coefficient of variation of estimated O-D demand as a
function of total number of trips assuming all links in network are
under surveillance
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8.5 Evaluation of Network Level of Surveillance
It has been shown that an estimate for the mean and variance of the O-D demands can be
determined. However, these equations were derived under the assumption that an unbiased
estimate of the level of market penetration can be made based on link flows. If the links that
are under detector surveillance do not provide an unbiased sample of all of the O-D trips
existing within the network, then estimates of the mean and variance of the O-D demands are
not strictly correct. This section develops a method by which the existing links under
surveillance can be tested to determine if they provide an unbiased sample of the existing O-
D demands.

The proposed methodology is carried out by comparing the probability of a trip
belonging to a specific O-D pair, as computed from the probes traversing links under
surveillance, with the probabilities computed using probe calls. If the probability estimated
based on the link information falls within the confidence limits of the probabilities estimated
from the probe calls, then it is surmised that the links provide an unbiased sample. If,
however, the probability estimated from the link information falls outside the confidence
limits, then it must be concluded that the links do not provide an unbiased sample.

Equation [8-2] is used to determine an estimate of Pij for all origins and destinations.
Equation [8-7b] provides an estimate of the variance of the sample probability. It is desirable
to be able to define confidence limits about the estimate of the mean probability. To do this,
it is advantageous to use the Normal distribution as it is symmetrical. According to the
literature [Lapin, 1983], the normal distribution can be used to approximate the binomial
distribution when the conditions defined in Equations [8-14a] and [8-14b] are met.

q ⋅ π > 5 [8-14a]

q (1 - π) > 5 [8-14b]
where: q = sample size

π = population probability of success

The 95% confidence limits for the probability of any trip being associated with origin i
and destination j, as shown in Equation [8-15], can then be created.

p p Sij ij pij
( % ) .95 1 96 C.L. = ± [8-15]

It is also possible to estimate the probability that a trip will be associated with origin i
and destination j from link information. Each time an RGS-equipped vehicle traverses a link
under surveillance, that vehicle's origin and destination can be recorded. Then, for all links
under surveillance, an estimate of pij can be made based on the proportion of the probe
vehicles traveling on the links under surveillance that were associated with each O-D pair
(Equation [8-16a].

∑
∑

=

L
L

L
ijL

E
ij a

a
p

,

[8-16a]
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where: aL,ij = number of probe vehicles associated with origin i and destination j
counted on link L which is a link under surveillance

aL = number of probe vehicles traversing link L, which is a link under
surveillance

If the trip length distribution for all O-D pairs is not the same, then Equation [8-16a]
should be adjusted to normalize for trip length as shown in Equation [8-16b]. It is assumed
that trip length provides an adequate measure of the number of links traversed.
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[8-16b]

where: L = average trip length across all O-D pairs
Lij = average trip length for origin i and destination j

If pij
E

 falls outside the confidence limits calculated using Equation [8-15], then the links
under surveillance are assumed to provide a biased sample of the trips within the network. If
the links under surveillance do not provide an unbiased sample, then Equations [8-13a]
through [8-13d] must be used with caution.

8.6 Example Network Description and Results
In order to illustrate the potential of vehicle probes to provide O-D information, an example
network is required. To permit an analytical analysis to also be performed for the same
network, the hypothetical network first introduced in Section 6.6.1 is once again utilized.

8.6.1 Network structure
Figure 8-4 illustrates the example network configuration. The network consists of 7 zones at
the periphery of the network, 5 traffic signals, and 40 directional links. Fourteen of the 40
links are zone connectors, 8 are single lane arterials, 10 are dual lane ramps, and the
remaining 8 links are two lane freeways.

A time series of 15 minute O-D demands, representing typical conditions during an 8
hour period commencing at 4 A.M., was produced. These demands, when simulated on the
network, resulted in freeway link flow peaking characteristics typically observed on an urban
multi-lane freeway in Toronto, Canada [Hellinga et al., 1993]. As indicated in Figure 8-5, a
time series of user-equilibrium multi-path routes was derived based on the time series of
static O-D demands. The network structure, time series of O-D demands, and the time series
of multi-path user-equilibrium paths were all used as input to the network traffic simulation
model INTEGRATION. Detailed descriptions of the INTEGRATION model are available in the
literature [Van Aerde et al., 1991b; Van Aerde et al., 1988].

The INTEGRATION simulation model has the capabilities of modeling the two way
communication capabilities of probe vehicles. When each probe vehicle initiates its trip, its
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origin and ultimate destination are transmitted and recorded. While the probe is en route, the
time taken to traverse each link is transmitted and recorded each time a node is reached.
When a probe vehicle arrives at its destination, the trip duration is reported. These data are
recorded in a probe information log, a portion of which is illustrated in Figure 8-6.

The network was simulated considering all vehicles as RGS equipped. However, though
the probe vehicles reported information, they did not receive information with which to alter
their routes. All routes were pre-defined. To evaluate the effect of level of market
penetration, the probe reports, recording when probes initiated their trips, were randomly
sampled to provide levels of market penetration from 5% to 100% in 5% increments. It
should be noted that in this analysis, an aggregate level of market penetration was applied.
The level of market penetration did not systematically vary temporally or spatially.

On the basis of these random probe samples, an analysis was conducted to determine
how closely estimates of O-D demands matched the true data. Within the simulation
analysis, the truth was defined as those conditions described when 100% of the vehicles were
considered to be probe vehicles.

Figure 8-4: Configuration of example traffic network

Freeway Corridor

Arterial Corridor



Chapter 8: Using RGS Vehicle Probes as Estimators of Dynamic O-D Demands 192

Figure 8-5: Process used to produce realistic traffic conditions on example network

Figure 8-6: Sample of typical probe information provided by simulation model

8.6.2 Results for example network
The simulation model provides the number of probe calls (cij) received from the probe RGS
equipped vehicles during each time period for each O-D pair. In addition, the number of

Typical Time Series 
of  Link Flows

O-D Estimator User-Equilibri
Assignment

Initial Routes

O-D Demands User-Equilibri
Multipath Rout

INTEGRATION
Simulation Model

Probe O-D
Information Information

Probe Link
Travel Time

Target Flows

Network
Structure

O-D Demands

O-D Estimator

 probe data log file
   1   4   2   3   4   2
         .
         .
         .
  11   4  38  38  36 0.00
         .
         .
         .
  11   4  103  37  65 0.00
         .
         .
         .
  11   4  169  34  65 0.00
         .
         .
         .
  2   4  426  4  3  1  425 1

Data Legend:
Column Description

1 1 = departure record
2 = arrival record
11 = link completion record

2 vehicle number

3 clock time (seconds)

4 record type 1 and 2: origin
record type 11: link number

5 record type 1 and 2: destination
record type 11: link travel time

6 record 1: expected entrance time
record 11: stop fraction
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probe vehicles on each link and the total number of vehicles on each link are available each
period. In practice, the number of probe vehicles on a link can be determined from the probe
logs. The total number of vehicles on a link would be obtained from loop detector counts.

Figure 8-7 illustrates the random fluctuations in the level of market penetration that are
observed on the network. It is evident, that despite the global level of market penetration
being held constant throughout the simulation, significant fluctuations occur in the level of
market penetration that is experienced on the network. The occurrence of these fluctuations
are due only to randomness in the generation of probe and non-probe vehicles at each origin
zone. When sample sizes are small (i.e. the O-D demand is small) these fluctuations are
particularly evident and there is greater opportunity for extreme values of the level of market
penetration to occur.

Figure 8-8 illustrates the estimated and actual O-D demand, as well as the confidence
limits about the estimate, for origin zone 1 and destination zone 3 by time of day. The overall
level of market penetration (M) is 20%. Equation [8-5b] is used to compute an estimate of
the demand. Since all links in the example network are assumed to be under surveillance,
Equation [8-13a] is used to provide an estimate of the confidence limits for an infinite
population, and Equation [8-13c] for a finite population. The results indicate that though the
O-D estimates fall within the confidence limits, the estimates can be highly inaccurate even
for a level of market penetration as high as 20%.

It is instructive to examine the change in the estimated O-D demand with changes in
level of market penetration. Figure 8-9 illustrates the estimated O-D demand between origin
zone 1 and destination zone 3 during the time interval from 7:15-7:30 AM. Estimated
demands approach the true demand with increasing level of market penetration, such that for
a level of market penetration of 100% the estimate is exact. However, though the estimated
values converge to the true demand, the convergence trend is only maintained on average.
For example, the estimate of a particular O-D demand is not necessarily more accurate at a
20% level of market penetration than it would be for a 5% level of market penetration. This
is illustrated in Figure 8-9 as, in this example, the estimate at 40% level of market
penetration is more accurate than the estimate made for a 70% level of market penetration.
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Figure 8-7: Random variation in the estimated level of market penetration (m) for a
global level of market penetration (M) of 5% and 20%

Figure 8-8: Analytical estimates and actual simulation results for a selected O-D
demand over time of day for an average level of market penetration of
20% (O-D pair 1-3)
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Figure 8-9: Analytical estimates and simulation results for a selected O-D demand
for various levels of market penetration (O-D pair 1-3 for time period
from 7:15 - 7:30 AM)

The previous discussion has been limited to the examination of a specific O-D pair.
Aggregate results for all O-D pairs in the network and for all time periods can also be
examined. Figure 8-10 illustrates the aggregate accuracy of O-D estimates, made based
solely on probe information, as a function of the average level of market penetration. The
accuracy of the O-D estimates is measured by the root-mean squared (RMS) O-D error as
computed by Equation [8-6]. To provide some relative scale, the RMS error is normalized by
dividing the result of Equation [8-6] by the average actual O-D demand.
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= [8-17]

where: N = number of zones in network

For an average level of market penetration of 5%, the average RMS O-D error is
approximately 78% of the average true O-D demand. As the level of market penetration
increases, the O-D error decreases non-linearly. At a level of market penetration of 100%,
the O-D estimate is exact. If it is desired to estimate O-D demands to such a level of
accuracy that the RMS error does not exceed 20% of the average observed O-D demand,
Figure 8-10 indicates that, for this network example, an average level of market penetration
of 40% is required.

It should be noted that the results presented in Figure 8-10 must be interpreted in
conjunction with the conditions of the example network. Specifically, the level of market
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penetration used within the simulation did not systematically vary either temporally or
spatially. As well, loop detector data were assumed to be available for all links in the
network, and to be free of measurement errors. Thus, the results presented within this chapter
could be considered to be a best case scenario. It is likely that error rates that would be
experienced in the field would be somewhat higher than those estimated here.

8.7 Summary
The above chapter has raised the issue that dynamic traffic assignment models, which are
executed in real-time, will need to rely on imperfect O-D data. It also has provided an initial
effort, based on statistical sampling theory, to estimate how this level of imperfection varies
as a function of the level of market penetration of RGS-equipped probe vehicles.

The application of statistical sampling theory required a number of approximations to be
made related to the covariance between various terms. While the implications of these
approximations were not explicitly quantified, the subsequent high level of agreement
between the analytical and simulation results provides a considerable level of confidence in
the appropriateness of approximations that were made.

Figure 8-10: Effect of level of market penetration on the accuracy of O-D estimation

The simulation results provided a very graphic representation of the nature of the
underlying sampling and estimation processes. The agreement between the simulation and
analytical results also provides considerable support for the application of the simulation
model for scenarios having a level of complexity that precludes the use of the analytical
estimates. The high degree to which the confidence limits depend upon the specific
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characteristics of the network and associated traffic flows will necessitate a unique execution
of these analyses for each network site.

The lack of highly reliable O-D estimates for levels of market penetration less than 30 to
50% indicates that synthetic O-D generators are certainly not yet obsolete. Furthermore, the
explicit estimation of confidence limits about probe based O-D estimates will permit a direct
quantitative assessment of whether probe based O-D estimates are superior to synthetic
estimates and what weightings should be applied when the probe based and synthetic
estimates need to be combined.
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CHAPTER 9

CONCLUSIONS AND
RECOMMENDATIONS

9.1 Overview
In this thesis, two types of origin-destination demand estimation models were formulated and
for them, corresponding iterative solution algorithms were developed. These models are
capable of estimating static and/or dynamic O-D demands on the basis of observed link flow
data for a subset of the network. These models were derived from a sound theoretical and
mathematical basis, yet are sufficiently robust to permit their application to many practical
real world traffic networks. To carry out the necessary computations, the LSE and LRE
iterative solution algorithms were incorporated into a program called the QUEENSOD model.

Specifically, the LSE and LRE models incorporate the ability to reflect the relative
reliability of the observed link traffic flows and of the prior O-D information for each O-D
cell. The performance characteristics of both models were illustrated for several hypothetical
networks for which true demands were known and for which analytical solutions could be
obtained. The models were also applied to a 35 km section of a multi-lane urban freeway in
Toronto, Canada.

The thesis also examined the expected statistical reliability of O-D estimates that are
made solely on the basis of RGS equipped vehicle probe data. This examination led to the
development of several analytical expressions quantifying this statistical reliability, where
the expressions were compared with simulated results for a hypothetical example network.
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9.2 Conclusions
The main conclusions, that can be drawn on the basis of the research reported on in this
thesis, are presented in the following three sections. The first section provides conclusions
that are made regarding the proposed LSE and LRE model formulations. In the second
section, conclusions are made on the basis of the results obtained from the application of the
LSE and LRE models to two hypothetical networks and the Highway 401 network. Finally,
the third section provides conclusions regarding the potential of using RGS probe vehicle
data to estimate O-D demands for all vehicles.

9.2.1 Proposed models
a) Minimizing the squared difference between observed and estimated link flows does not

ensure that O-D estimates are non-negative. The inclusion of inequality constraints, that
explicitly constrain estimated demands to the non-negative region, significantly
complicates the analytical solution to the optimization of the error function. The use of
truncation and projection methods for ensuring non-negative demands, can result in the
selection of a solution that is sub-optimal. Furthermore, in these cases, the magnitude of
this sub-optimality is usually not known.

b) In the presence of multiple optima, a system of linear equations, which describes the O-D
estimation problem, is under-specified. Consequently, the traditional solution approaches
which rely on matrix inversion in order to solve this system are not applicable.
Furthermore, when the system is not under-specified, this matrix approach imposes
excessive computer memory requirements, making it impractical for most realistically
sized networks.

c) An iterative solution approach was proposed that ensures that the estimated demands are
non-negative. This approach is also applicable when multiple optima exist, or when only
a single optimum exists. Furthermore, this iterative approach imposes more modest
computer memory requirements that can usually be met using current personal computer
capabilities. The iterative method is a modification of the Jacobi iterative technique. For
the LSE model, it was found that a relaxation factor could be incorporated to ensure
convergence, even when diagonal dominance criteria were not satisfied.

d) The LRE model was formulated on the basis of minimizing the squared natural logarithm
of the relative link flow error. Instead of considering the absolute magnitude of the error,
this formulation considers the magnitude of the error relative to the observed flow. It was
shown that this formulation leads to a system of non-linear constraints which does not
have an explicit closed-form algebraic solution. It was concluded that a solution, that
satisfies the system of non-linear constraints, always exists but the uniqueness of the
solution was not proven. Neither node, nor path flow continuity is required, but since the
system of non-linear constraints does not have a closed-form algebraic solution, an
iterative solution algorithm needed to be developed that successively modifies an initial
seed until some desired level of convergence is reached.
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9.2.2 Application of proposed models
a) Fully dynamic O-D demands are superior to piece-wise static demands in that they reflect

the temporal relationships between trip departure times and arrival times of links. The
importance of these temporal inter-relationships to the accuracy of the estimated
demands increases as the trip duration becomes an increasingly larger fraction of the
period duration.

b) The LRE model was found to converge more rapidly than the LSE model for the two
hypothetical network applications that were considered in this thesis. It was not possible,
however, to categorically state that the LRE model always converges more rapidly than
the LSE model, as each model's convergence properties are likely a function of the
network's characteristics.

c) Despite the different convergence rates observed for the LSE and LRE models, the
accuracy of the final model O-D estimates were comparable.

d) It was concluded that the Highway 401 network represented a challenging system for
which to estimate O-D demands. The task of estimating demands is complicated by the
existence of two parallel route choices, by the availability of FTMS data for only 45% of
the network, by the lack of any prior O-D information, and by the lack of any data that
would reflect the true O-D demands.

e) It was concluded that the LSE and LRE models were able to estimate dynamic demands
for the Highway 401 network that accurately reflected the observed link flows, as
estimates from both models resulted in correlation coefficients between estimated and
observed link flows of approximately 98%. It was also observed that the LRE model
again converged more rapidly than did the LSE model. Furthermore, a comparison
between the estimated and observed zonal productions and attractions indicated that, as
expected, the LRE model was significantly more accurate in replicating these flows. It
was not possible, however, to make any conclusions regarding which model is most
appropriate in general, as each model's performance is again likely to be a function of the
network's characteristics.

9.2.3 Potential of probe data
a) The anticipated implementation of operational route guidance systems (RGS) has led

some to conclude that near real-time O-D information from RGS probe vehicles make
the development of synthetic O-D estimation models unnecessary. To explore this
hypothesis, statistical sampling theory was employed in Chapter 8 to develop
expressions, which quantify the expected reliability of O-D demands that were estimated
solely on the basis of RGS probe data. This development required a number of
approximations to be made related to the covariance between various terms and the
distribution of RGS probes throughout the general vehicle population. However, while
the implications of these approximations were noted to yield conservative estimates and
were not quantified further, it was concluded that the high level of correlation between
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the analytical and simulation results provides a measure of confidence in the
appropriateness of these approximations.

b) On the basis of the application of the developed expressions to a hypothetical network, it
was concluded that reliable O-D estimates, made solely on the basis of probe data, are
not likely to be sufficiently accurate to be of practical benefit until the level of market
penetration reaches the 30 to 50% level. It was also concluded that probe-based estimates
could be used effectively as prior information within an appropriate synthetic O-D
estimation model, such as the LSE or LRE models that were developed in this thesis.
Furthermore, the knowledge of the reliability of these probe-based estimates may also be
incorporated into the synthetic O-D model.

9.3 Limitations of this Research
In this thesis, a number of assumptions and approximations needed to be which place some
limitations on the applicability of the resulting models and equations. The following two
sections explicitly state these limitations, first for the LSE and LRE models, and then for the
statistical analysis of RGS probe data.

9.3.1 Limitations of the LSE and LRE models
a) Similar to most existing practical dynamic O-D estimation methods, the LSE and LRE

models require the a priori knowledge of the prevailing routes and route weights. These
routes need not be completely accurate, however, inaccuracies in the chosen routes or
route weights will negatively impact the quality of the estimated demands.

b) The travel time on each link must be known for each period for which observed flows are
available. These travel times may be estimated on the basis of spot speeds recorded by
detectors, or by estimates from a speed-flow relationship.

c) Due to the multiplicative nature of the LRE solution algorithm, zero cells in the seed
demand matrix cannot be altered regardless of the observed flows.

d) The modified Jacobi iterative method, which was developed for solving the system of
linear equations that result from the LSE model, requires diagonal dominance in order
for convergence to be guaranteed. As this dominance may not always exist in the system
of normal equations, the LSE iterative solution uses a relaxation factor α to increase the
likelihood of convergence. It is possible that if α is insufficiently small, the solution
algorithm may not converge.

e) Both the LSE and LRE models require the specification of a seed matrix, reflecting prior
knowledge of the structure and magnitude of the O-D demand. The models permit the
specification of the relative accuracy of individual seed O-D cell values, but no explicit
consideration is given to maintaining the overall structure of the seed matrix.
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9.3.2 Limitations of the statistical evaluation of probe data
The expressions, that quantify the expected quality of O-D demand estimates made solely on
the basis of RGS probe vehicle data, required that several assumptions be made, resulting in
the following limitations:
a) It was assumed that the level of correlation between the population probability that a trip

will be between origin i and destination j, and the total number of trip departures, is
negligible.

b) It was assumed that no systematic bias existed in the ownership of RGS equipped vehicle
by O-D pair. A violation of this assumption would imply that probe vehicle trips no
longer provide an unbiased sample of all trips.

9.4 Significance of the Thesis Contributions

9.4.1 Significance of the LSE and LRE models
The proposed LSE and LRE models maintain a sufficiently broad mathematical basis which
permits generalized inferences to be drawn about these two models. The model formulations
explicitly recognize that field data rarely exhibit node or path flow continuity. The
formulations and solution algorithms provide results that are consistent with each other when
a single solution exists, when multiple solutions exist, and when no solutions exist that
exactly replicate the observed link flows.

The significance of the LSE and LRE models is their ability to perform the following:
a) The models are able to estimate both static and dynamic O-D demands from link flows

that do not need to exhibit node or path flow continuity.
b) The model formulations explicitly incorporate the relative reliability of both observed

link flows and individual seed O-D demand matrix cells.
c) The models are capable of computing the relative reliability of an observed link flow on

the basis of the magnitude of the flow discontinuity at the two nodes to which the link is
joined.

d) The models can determine if observed flows were likely to have resulted from trips
departing their origins prior to the period of analysis.

e) The QUEENSOD model, which incorporates the LSE and LRE model algorithms, is able
to utilize the data file structure of the network traffic simulation model INTEGRATION.
Furthermore, the demands estimated by the QUEENSOD model are output in a format that
is compatible with the O-D demand data file structure required by the INTEGRATION
model.
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9.4.2 Significance of the evaluation of vehicle probe data
Technological advancements in the areas of communications and computer hardware have
recently often outpaced the traffic engineering community's collective expertise with respect
to operating these complex systems to their full potential. Much speculation has occurred
over the potential of using RGS probe vehicle data to estimate dynamic O-D demands.
Unfortunately, very little rigorous research has been conducted to support or disprove these
speculative claims.

The statistically based development of techniques for using RGS probe vehicle data to
estimate dynamic O-D demands is significant for the following specific reasons:
a) This quantitative assessment of the expected reliability of dynamic O-D estimates made

solely on the basis of RGS probe vehicle data has not been previously conducted.
b) The expressions developed objectively quantify the expected reliability of O-D demand

estimates that are made solely on the basis of RGS vehicle probe data.
c) Despite the limitations, that result from the assumptions made in the development of

these expressions, they can be used to estimate confidence limits about RGS probe
vehicle based O-D estimates.

d) Even though probe based O-D estimates are expected to be initially insufficiently
accurate to be of significant practical benefit, they may be utilized as prior information in
synthetic O-D estimation models that explicitly consider the reliability of individual O-D
demands, such as the LSE and LRE models developed in this thesis.

9.5 Recommendations for Further Work

9.5.1 Further development of the LSE and LRE models
a) There remains a significant need for either a practical method of simultaneously

estimating O-D demands, routes, and route weights, or some means of determining
appropriate routes and route weights, without the availability of prior knowledge of the
O-D demands.

b) It is necessary to assess the sensitivity of the accuracy of estimated demands, to the
accuracy of routes, route weights, and link travel times. Knowledge of these sensitivities
would indicate how accurate each of these data sources needs to be, and would permit a
better selection of the relative priorities in data collection effort for each data item.

c) Dynamic O-D demands for the Highway 401 network should be re-estimated when
FTMS detector data are available for a greater portion of the network, such that greater
confidence could be placed in the demands estimated for this portion of the network. The
availability of data for a greater portion of the network would also result in more accurate
measures of performance, as these measures could reflect conditions over a greater
portion of the network.
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d) It is necessary to establish how sensitive dynamic traffic assignment solutions are to the
accuracy of the dynamic O-D demands. The extent to which current dynamic traffic
assignment methods are sensitive to imperfect real-time O-D data is especially important
when such methods play a critical role in any IVHS architectures.

e) Quantitative comparisons should be made between the most promising dynamic O-D
estimation methods. These comparisons should be carried out for several hypothetical
networks of varying complexity, as well as for an actual network using field data.

9.5.2 Further development of the use of probe data in estimating
dynamic demands

a) It is recommended that the approximations, that were made in deriving the analytical
solutions, be investigated to establish either their associated error, or to determine
methods by which the impacts of such approximations could be reduced or eliminated.
The investigation of other networks with several loading scenarios needs to be carried
out to determine if the observed level of market penetration trends exhibit systematic
dependencies on factors which were not studied in this thesis.

b) On a practical level, a comparison of the combined analytical and simulation results to
actual data from field tests should be made. The relative benefits of demands, estimated
on the basis of probe data, versus those made on the basis of synthetic estimators, should
also be examined using field data. In particular, methods by which probe data could be
utilized to supplement synthetic O-D analyses should be developed and explored.

c) The use of probe-based O-D demands as prior information in a synthetic estimation
approach should be illustrated. In particular, the relationship between the average
network wide level of market penetration, the reliability of the associated probe-based O-
D estimated, and the reliability of the population O-D estimated by the synthetic
estimation model, should be examined.
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